# -*- coding: utf-8 -*-
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
# pylint: disable=no-member
"""Integer Comparator."""
from typing import List, Optional
import numpy as np
from qiskit.circuit import QuantumRegister
from qiskit.circuit.exceptions import CircuitError
from ..boolean_logic import OR
from ..blueprintcircuit import BlueprintCircuit
[docs]class IntegerComparator(BlueprintCircuit):
r"""Integer Comparator.
Operator compares basis states :math:`|i\rangle_n` against a classically given integer
:math:`L` of fixed value and flips a target qubit if :math:`i \geq L`
(or :math:`<` depending on parameters):
.. math::
|i\rangle_n |0\rangle \mapsto |i\rangle_n |i \geq L\rangle
This operation is based on two's complement implementation of binary subtraction but only
uses carry bits and no actual result bits. If the most significant carry bit
(the results bit) is 1, the :math:`\geq` condition is ``True`` otherwise it is ``False``.
"""
def __init__(self, num_state_qubits: Optional[int] = None,
value: Optional[int] = None,
geq: bool = True,
name: str = 'cmp') -> None:
"""Create a new fixed value comparator circuit.
Args:
num_state_qubits: Number of state qubits. If this is set it will determine the number
of qubits required for the circuit.
value: The fixed value to compare with.
geq: If True, evaluate a ``>=`` condition, else ``<``.
name: Name of the circuit.
"""
super().__init__(name=name)
self._data = None
self._value = None
self._geq = None
self._num_state_qubits = None
self.value = value
self.geq = geq
self.num_state_qubits = num_state_qubits
@property
def value(self) -> int:
"""The value to compare the qubit register to.
Returns:
The value against which the value of the qubit register is compared.
"""
return self._value
@value.setter
def value(self, value: int) -> None:
if value != self._value:
self._invalidate()
self._value = value
@property
def geq(self) -> bool:
"""Return whether the comparator compares greater or less equal.
Returns:
True, if the comparator compares ``>=``, False if ``<``.
"""
return self._geq
@geq.setter
def geq(self, geq: bool) -> None:
"""Set whether the comparator compares greater or less equal.
Args:
geq: If True, the comparator compares ``>=``, if False ``<``.
"""
if geq != self._geq:
self._invalidate()
self._geq = geq
@property
def num_state_qubits(self) -> int:
"""The number of qubits encoding the state for the comparison.
Returns:
The number of state qubits.
"""
return self._num_state_qubits
@num_state_qubits.setter
def num_state_qubits(self, num_state_qubits: Optional[int]) -> None:
"""Set the number of state qubits.
Note that this will change the quantum registers.
Args:
num_state_qubits: The new number of state qubits.
"""
if self._num_state_qubits is None or num_state_qubits != self._num_state_qubits:
self._invalidate() # reset data
self._num_state_qubits = num_state_qubits
if num_state_qubits:
# set the new qubit registers
qr_state = QuantumRegister(self.num_state_qubits, name='state')
q_compare = QuantumRegister(1, name='compare')
self.qregs = [qr_state, q_compare]
if self.num_ancilla_qubits > 0:
qr_ancilla = QuantumRegister(self.num_ancilla_qubits, name='ancilla')
self.qregs += [qr_ancilla]
@property
def num_ancilla_qubits(self) -> int:
"""The number of ancilla qubits used.
Returns:
The number of ancillas in the circuit.
"""
return self._num_state_qubits - 1
def _get_twos_complement(self) -> List[int]:
"""Returns the 2's complement of ``self.value`` as array.
Returns:
The 2's complement of ``self.value``.
"""
twos_complement = pow(2, self.num_state_qubits) - int(np.ceil(self.value))
twos_complement = '{0:b}'.format(twos_complement).rjust(self.num_state_qubits, '0')
twos_complement = \
[1 if twos_complement[i] == '1' else 0 for i in reversed(range(len(twos_complement)))]
return twos_complement
def _check_configuration(self, raise_on_failure: bool = True) -> bool:
"""Check if the current configuration is valid."""
valid = True
if self._num_state_qubits is None:
valid = False
if raise_on_failure:
raise AttributeError('Number of state qubits is not set.')
if self._value is None:
valid = False
if raise_on_failure:
raise AttributeError('No comparison value set.')
required_num_qubits = 2 * self.num_state_qubits
if self.num_qubits != required_num_qubits:
valid = False
if raise_on_failure:
raise CircuitError('Number of qubits does not match required number of qubits.')
return valid
def _build(self) -> None:
"""Build the comparator circuit."""
super()._build()
qr_state = self.qubits[:self.num_state_qubits]
q_compare = self.qubits[self.num_state_qubits]
qr_ancilla = self.qubits[self.num_state_qubits + 1:]
if self.value <= 0: # condition always satisfied for non-positive values
if self._geq: # otherwise the condition is never satisfied
self.x(q_compare)
# condition never satisfied for values larger than or equal to 2^n
elif self.value < pow(2, self.num_state_qubits):
if self.num_state_qubits > 1:
twos = self._get_twos_complement()
for i in range(self.num_state_qubits):
if i == 0:
if twos[i] == 1:
self.cx(qr_state[i], qr_ancilla[i])
elif i < self.num_state_qubits - 1:
if twos[i] == 1:
self.compose(OR(2), [qr_state[i], qr_ancilla[i - 1], qr_ancilla[i]],
inplace=True)
else:
self.ccx(qr_state[i], qr_ancilla[i - 1], qr_ancilla[i])
else:
if twos[i] == 1:
# OR needs the result argument as qubit not register, thus
# access the index [0]
self.compose(OR(2), [qr_state[i], qr_ancilla[i - 1], q_compare],
inplace=True)
else:
self.ccx(qr_state[i], qr_ancilla[i - 1], q_compare)
# flip result bit if geq flag is false
if not self._geq:
self.x(q_compare)
# uncompute ancillas state
for i in reversed(range(self.num_state_qubits-1)):
if i == 0:
if twos[i] == 1:
self.cx(qr_state[i], qr_ancilla[i])
else:
if twos[i] == 1:
self.compose(OR(2), [qr_state[i], qr_ancilla[i - 1], qr_ancilla[i]],
inplace=True)
else:
self.ccx(qr_state[i], qr_ancilla[i - 1], qr_ancilla[i])
else:
# num_state_qubits == 1 and value == 1:
self.cx(qr_state[0], q_compare)
# flip result bit if geq flag is false
if not self._geq:
self.x(q_compare)
else:
if not self._geq: # otherwise the condition is never satisfied
self.x(q_compare)