Source code for qiskit.aqua.operators.state_fns.dict_state_fn

# -*- coding: utf-8 -*-

# This code is part of Qiskit.
#
# (C) Copyright IBM 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

""" DictStateFn Class """

from typing import Union, Set
import itertools
import numpy as np
from scipy import sparse

from qiskit.result import Result
from qiskit.circuit import ParameterExpression

from ..operator_base import OperatorBase
from .state_fn import StateFn
from ..list_ops.list_op import ListOp


[docs]class DictStateFn(StateFn): """ A class for state functions and measurements which are defined by a lookup table, stored in a dict. """ # TODO allow normalization somehow? def __init__(self, primitive: Union[str, dict, Result] = None, coeff: Union[int, float, complex, ParameterExpression] = 1.0, is_measurement: bool = False) -> None: """ Args: primitive: The dict, single bitstring (if defining a basis sate), or Qiskit Result, which defines the behavior of the underlying function. coeff: A coefficient by which to multiply the state function. is_measurement: Whether the StateFn is a measurement operator. Raises: TypeError: invalid parameters. """ # If the initial density is a string, treat this as a density dict # with only a single basis state. if isinstance(primitive, str): primitive = {primitive: 1} # NOTE: # 1) This is not the same as passing in the counts dict directly, as this will # convert the shot numbers to # probabilities, whereas passing in the counts dict will not. # 2) This will extract counts for both shot and statevector simulations. # To use the statevector, # simply pass in the statevector. # 3) This will only extract the first result. if isinstance(primitive, Result): counts = primitive.get_counts() # NOTE: Need to square root to take correct Pauli measurements! primitive = {bstr: (shots / sum(counts.values()))**.5 for (bstr, shots) in counts.items()} if not isinstance(primitive, dict): raise TypeError( 'DictStateFn can only be instantiated with dict, ' 'string, or Qiskit Result, not {}'.format(type(primitive))) super().__init__(primitive, coeff=coeff, is_measurement=is_measurement)
[docs] def primitive_strings(self) -> Set[str]: return {'Dict'}
@property def num_qubits(self) -> int: return len(list(self.primitive.keys())[0])
[docs] def add(self, other: OperatorBase) -> OperatorBase: if not self.num_qubits == other.num_qubits: raise ValueError( 'Sum over statefns with different numbers of qubits, {} and {}, is not well ' 'defined'.format(self.num_qubits, other.num_qubits)) # Right now doesn't make sense to add a StateFn to a Measurement if isinstance(other, DictStateFn) and self.is_measurement == other.is_measurement: # TODO add compatibility with vector and Operator? if self.primitive == other.primitive: return DictStateFn(self.primitive, coeff=self.coeff + other.coeff, is_measurement=self.is_measurement) else: new_dict = {b: (v * self.coeff) + (other.primitive.get(b, 0) * other.coeff) for (b, v) in self.primitive.items()} new_dict.update({b: v * other.coeff for (b, v) in other.primitive.items() if b not in self.primitive}) return StateFn(new_dict, is_measurement=self._is_measurement) # pylint: disable=cyclic-import,import-outside-toplevel from qiskit.aqua.operators import SummedOp return SummedOp([self, other])
[docs] def adjoint(self) -> OperatorBase: return DictStateFn({b: np.conj(v) for (b, v) in self.primitive.items()}, coeff=np.conj(self.coeff), is_measurement=(not self.is_measurement))
[docs] def tensor(self, other: OperatorBase) -> OperatorBase: # Both dicts if isinstance(other, DictStateFn): new_dict = {k1 + k2: v1 * v2 for ((k1, v1,), (k2, v2)) in itertools.product(self.primitive.items(), other.primitive.items())} return StateFn(new_dict, coeff=self.coeff * other.coeff, is_measurement=self.is_measurement) # pylint: disable=cyclic-import,import-outside-toplevel from qiskit.aqua.operators import TensoredOp return TensoredOp([self, other])
[docs] def to_density_matrix(self, massive: bool = False) -> np.ndarray: if self.num_qubits > 16 and not massive: raise ValueError( 'to_matrix will return an exponentially large matrix,' ' in this case {0}x{0} elements.' ' Set massive=True if you want to proceed.'.format(2**self.num_qubits)) states = int(2 ** self.num_qubits) return self.to_matrix() * np.eye(states) * self.coeff
[docs] def to_matrix(self, massive: bool = False) -> np.ndarray: if self.num_qubits > 16 and not massive: raise ValueError( 'to_vector will return an exponentially large vector, in this case {0} elements.' ' Set massive=True if you want to proceed.'.format(2**self.num_qubits)) states = int(2 ** self.num_qubits) probs = np.zeros(states) + 0.j for k, v in self.primitive.items(): probs[int(k, 2)] = v vec = probs * self.coeff # Reshape for measurements so np.dot still works for composition. return vec if not self.is_measurement else vec.reshape(1, -1)
[docs] def to_spmatrix(self) -> sparse.spmatrix: """ Same as to_matrix, but returns csr sparse matrix. Returns: CSR sparse matrix representation of the State function. Raises: ValueError: invalid parameters. """ indices = [int(v, 2) for v in self.primitive.keys()] vals = np.array(list(self.primitive.values())) * self.coeff spvec = sparse.csr_matrix((vals, (np.zeros(len(indices), dtype=int), indices)), shape=(1, 2**self.num_qubits)) return spvec if not self.is_measurement else spvec.transpose()
[docs] def to_circuit_op(self) -> OperatorBase: """ Return ``StateFnCircuit`` corresponding to this StateFn.""" from .circuit_state_fn import CircuitStateFn csfn = CircuitStateFn.from_dict(self.primitive) * self.coeff return csfn.adjoint() if self.is_measurement else csfn
def __str__(self) -> str: prim_str = str(self.primitive) if self.coeff == 1.0: return "{}({})".format('DictStateFn' if not self.is_measurement else 'DictMeasurement', prim_str) else: return "{}({}) * {}".format('DictStateFn' if not self.is_measurement else 'DictMeasurement', prim_str, self.coeff) # pylint: disable=too-many-return-statements
[docs] def eval(self, front: Union[str, dict, np.ndarray, OperatorBase] = None) -> Union[OperatorBase, float, complex]: if not self.is_measurement and isinstance(front, OperatorBase): raise ValueError( 'Cannot compute overlap with StateFn or Operator if not Measurement. Try taking ' 'sf.adjoint() first to convert to measurement.') if isinstance(front, ListOp) and front.distributive: return front.combo_fn([self.eval(front.coeff * front_elem) for front_elem in front.oplist]) # For now, always do this. If it's not performant, we can be more granular. if not isinstance(front, OperatorBase): front = StateFn(front) # pylint: disable=cyclic-import,import-outside-toplevel from ..operator_globals import EVAL_SIG_DIGITS # If the primitive is a lookup of bitstrings, # we define all missing strings to have a function value of # zero. if isinstance(front, DictStateFn): return round(sum([v * front.primitive.get(b, 0) for (b, v) in self.primitive.items()]) * self.coeff * front.coeff, ndigits=EVAL_SIG_DIGITS) # All remaining possibilities only apply when self.is_measurement is True from .vector_state_fn import VectorStateFn if isinstance(front, VectorStateFn): # TODO does it need to be this way for measurement? # return sum([v * front.primitive.data[int(b, 2)] * # np.conj(front.primitive.data[int(b, 2)]) return round(sum([v * front.primitive.data[int(b, 2)] for (b, v) in self.primitive.items()]) * self.coeff, ndigits=EVAL_SIG_DIGITS) from .circuit_state_fn import CircuitStateFn if isinstance(front, CircuitStateFn): # Don't reimplement logic from CircuitStateFn return np.conj(front.adjoint().eval(self.adjoint().primitive)) * self.coeff from .operator_state_fn import OperatorStateFn if isinstance(front, OperatorStateFn): return front.adjoint().eval(self.adjoint()) # All other OperatorBases go here return front.adjoint().eval(self.adjoint().primitive).adjoint() * self.coeff
[docs] def sample(self, shots: int = 1024, massive: bool = False, reverse_endianness: bool = False) -> dict: probs = np.array(list(self.primitive.values()))**2 unique, counts = np.unique(np.random.choice(list(self.primitive.keys()), size=shots, p=(probs / sum(probs))), return_counts=True) counts = dict(zip(unique, counts)) if reverse_endianness: scaled_dict = {bstr[::-1]: (prob / shots) for (bstr, prob) in counts.items()} else: scaled_dict = {bstr: (prob / shots) for (bstr, prob) in counts.items()} return dict(sorted(scaled_dict.items(), key=lambda x: x[1], reverse=True))