Source code for qiskit.aqua.operators.primitive_ops.pauli_op

# -*- coding: utf-8 -*-

# This code is part of Qiskit.
#
# (C) Copyright IBM 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

""" PauliOp Class """

from typing import Union, Optional, Set
import logging
import numpy as np
from scipy.sparse import spmatrix

from qiskit import QuantumCircuit
from qiskit.circuit import ParameterExpression, Instruction
from qiskit.quantum_info import Pauli
from qiskit.circuit.library import RZGate, RYGate, RXGate, XGate, YGate, ZGate, IGate

from ..operator_base import OperatorBase
from .primitive_op import PrimitiveOp
from ..list_ops.summed_op import SummedOp
from ..list_ops.composed_op import ComposedOp
from ..list_ops.tensored_op import TensoredOp
from ..legacy.weighted_pauli_operator import WeightedPauliOperator

logger = logging.getLogger(__name__)
PAULI_GATE_MAPPING = {'X': XGate(), 'Y': YGate(), 'Z': ZGate(), 'I': IGate()}


[docs]class PauliOp(PrimitiveOp): """ Class for Operators backed by Terra's ``Pauli`` module. """ def __init__(self, primitive: Union[Pauli] = None, coeff: Optional[Union[int, float, complex, ParameterExpression]] = 1.0) -> None: """ Args: primitive: The Pauli which defines the behavior of the underlying function. coeff: A coefficient multiplying the primitive. Raises: TypeError: invalid parameters. """ if not isinstance(primitive, Pauli): raise TypeError( 'PauliOp can only be instantiated with Paulis, not {}'.format(type(primitive))) super().__init__(primitive, coeff=coeff)
[docs] def primitive_strings(self) -> Set[str]: return {'Pauli'}
@property def num_qubits(self) -> int: return len(self.primitive)
[docs] def add(self, other: OperatorBase) -> OperatorBase: if not self.num_qubits == other.num_qubits: raise ValueError( 'Sum over operators with different numbers of qubits, {} and {}, is not well ' 'defined'.format(self.num_qubits, other.num_qubits)) if isinstance(other, PauliOp) and self.primitive == other.primitive: return PauliOp(self.primitive, coeff=self.coeff + other.coeff) return SummedOp([self, other])
[docs] def adjoint(self) -> OperatorBase: return PauliOp(self.primitive, coeff=np.conj(self.coeff))
[docs] def equals(self, other: OperatorBase) -> bool: if not isinstance(other, PauliOp) or not self.coeff == other.coeff: return False return self.primitive == other.primitive
[docs] def tensor(self, other: OperatorBase) -> OperatorBase: # Both Paulis if isinstance(other, PauliOp): # Copying here because Terra's Pauli kron is in-place. op_copy = Pauli(x=other.primitive.x, z=other.primitive.z) # NOTE!!! REVERSING QISKIT ENDIANNESS HERE return PauliOp(op_copy.kron(self.primitive), coeff=self.coeff * other.coeff) # pylint: disable=cyclic-import,import-outside-toplevel from .circuit_op import CircuitOp if isinstance(other, CircuitOp): return self.to_circuit_op().tensor(other) return TensoredOp([self, other])
[docs] def compose(self, other: OperatorBase) -> OperatorBase: other = self._check_zero_for_composition_and_expand(other) # If self is identity, just return other. if not any(self.primitive.x + self.primitive.z): return other * self.coeff # Both Paulis if isinstance(other, PauliOp): product, phase = Pauli.sgn_prod(self.primitive, other.primitive) return PrimitiveOp(product, coeff=self.coeff * other.coeff * phase) # pylint: disable=cyclic-import,import-outside-toplevel from .circuit_op import CircuitOp from ..state_fns.circuit_state_fn import CircuitStateFn if isinstance(other, (CircuitOp, CircuitStateFn)): return self.to_circuit_op().compose(other) return ComposedOp([self, other])
[docs] def to_matrix(self, massive: bool = False) -> np.ndarray: if self.num_qubits > 16 and not massive: raise ValueError( 'to_matrix will return an exponentially large matrix, ' 'in this case {0}x{0} elements.' ' Set massive=True if you want to proceed.'.format(2 ** self.num_qubits)) return self.primitive.to_matrix() * self.coeff
[docs] def to_spmatrix(self) -> spmatrix: """ Returns SciPy sparse matrix representation of the Operator. Returns: CSR sparse matrix representation of the Operator. Raises: ValueError: invalid parameters. """ return self.primitive.to_spmatrix() * self.coeff
def __str__(self) -> str: prim_str = str(self.primitive) if self.coeff == 1.0: return prim_str else: return "{} * {}".format(self.coeff, prim_str)
[docs] def eval(self, front: Union[str, dict, np.ndarray, OperatorBase] = None) -> Union[OperatorBase, float, complex]: if front is None: return self.to_matrix_op() # pylint: disable=import-outside-toplevel,cyclic-import from ..state_fns.state_fn import StateFn from ..state_fns.dict_state_fn import DictStateFn from ..state_fns.circuit_state_fn import CircuitStateFn from ..list_ops.list_op import ListOp from .circuit_op import CircuitOp new_front = None # For now, always do this. If it's not performant, we can be more granular. if not isinstance(front, OperatorBase): front = StateFn(front, is_measurement=False) if isinstance(front, ListOp) and front.distributive: new_front = front.combo_fn([self.eval(front.coeff * front_elem) for front_elem in front.oplist]) elif isinstance(front, DictStateFn): new_dict = {} corrected_x_bits = self.primitive.x[::-1] corrected_z_bits = self.primitive.z[::-1] for bstr, v in front.primitive.items(): bitstr = np.asarray(list(bstr)).astype(np.int).astype(np.bool) new_b_str = np.logical_xor(bitstr, corrected_x_bits) new_str = ''.join(map(str, 1 * new_b_str)) z_factor = np.product(1 - 2 * np.logical_and(bitstr, corrected_z_bits)) y_factor = np.product(np.sqrt(1 - 2 * np.logical_and(corrected_x_bits, corrected_z_bits) + 0j)) new_dict[new_str] = (v * z_factor * y_factor) + new_dict.get(new_str, 0) new_front = StateFn(new_dict, coeff=self.coeff * front.coeff) elif isinstance(front, StateFn) and front.is_measurement: raise ValueError('Operator composed with a measurement is undefined.') # Composable types with PauliOp elif isinstance(front, (PauliOp, CircuitOp, CircuitStateFn)): new_front = self.compose(front) # Covers VectorStateFn and OperatorStateFn elif isinstance(front, OperatorBase): new_front = self.to_matrix_op().eval(front.to_matrix_op()) return new_front
[docs] def exp_i(self) -> OperatorBase: """ Return a ``CircuitOp`` equivalent to e^-iH for this operator H. """ # if only one qubit is significant, we can perform the evolution corrected_x = self.primitive.x[::-1] corrected_z = self.primitive.z[::-1] # pylint: disable=import-outside-toplevel,no-member sig_qubits = np.logical_or(corrected_x, corrected_z) if np.sum(sig_qubits) == 0: # e^I is just a global phase, but we can keep track of it! Should we? # For now, just return identity return PauliOp(self.primitive) if np.sum(sig_qubits) == 1: sig_qubit_index = sig_qubits.tolist().index(True) coeff = np.real(self.coeff) \ if not isinstance(self.coeff, ParameterExpression) \ else self.coeff # Y rotation if corrected_x[sig_qubit_index] and corrected_z[sig_qubit_index]: rot_op = PrimitiveOp(RYGate(coeff)) # Z rotation elif corrected_z[sig_qubit_index]: rot_op = PrimitiveOp(RZGate(coeff)) # X rotation elif corrected_x[sig_qubit_index]: rot_op = PrimitiveOp(RXGate(coeff)) from ..operator_globals import I left_pad = I.tensorpower(sig_qubit_index) right_pad = I.tensorpower(self.num_qubits - sig_qubit_index - 1) # Need to use overloaded operators here in case left_pad == I^0 return left_pad ^ rot_op ^ right_pad else: from ..evolutions.evolved_op import EvolvedOp return EvolvedOp(self)
def __hash__(self) -> int: # Need this to be able to easily construct AbelianGraphs return hash(str(self))
[docs] def commutes(self, other_op: OperatorBase) -> bool: """ Returns whether self commutes with other_op. Args: other_op: An ``OperatorBase`` with which to evaluate whether self commutes. Returns: A bool equaling whether self commutes with other_op """ if not isinstance(other_op, PauliOp): return False # Don't use compose because parameters will break this self_bits = self.primitive.z.astype(int) + 2 * self.primitive.x.astype(int) other_bits = other_op.primitive.z.astype(int) + 2 * other_op.primitive.x.astype(int) return all((self_bits * other_bits) * (self_bits - other_bits) == 0)
[docs] def to_circuit(self) -> QuantumCircuit: # If Pauli equals identity, don't skip the IGates is_identity = sum(self.primitive.x + self.primitive.z) == 0 # Note: Reversing endianness!! qc = QuantumCircuit(len(self.primitive)) for q, pauli_str in enumerate(reversed(self.primitive.to_label())): gate = PAULI_GATE_MAPPING[pauli_str] if not pauli_str == 'I' or is_identity: qc.append(gate, qargs=[q]) return qc
[docs] def to_instruction(self) -> Instruction: # TODO should we just do the following because performance of adding and deleting IGates # doesn't matter? # (Reduce removes extra IGates). # return PrimitiveOp(self.primitive.to_instruction(), coeff=self.coeff).reduce() return self.to_circuit().to_instruction()
[docs] def to_pauli_op(self, massive: bool = False) -> OperatorBase: return self
[docs] def to_legacy_op(self, massive: bool = False) -> WeightedPauliOperator: if isinstance(self.coeff, ParameterExpression): try: coeff = float(self.coeff) except TypeError: raise TypeError('Cannot convert Operator with unbound parameter {} to Legacy ' 'Operator'.format(self.coeff)) else: coeff = self.coeff return WeightedPauliOperator(paulis=[(coeff, self.primitive)])