Source code for qiskit.aqua.components.uncertainty_problems.univariate_problem

# -*- coding: utf-8 -*-

# This code is part of Qiskit.
#
# (C) Copyright IBM 2019, 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

""" Univariate uncertainty problem. """

from typing import Optional
from qiskit.aqua.components.uncertainty_models import UnivariateDistribution
from qiskit.aqua.components.uncertainty_problems import UncertaintyProblem
from .univariate_piecewise_linear_objective import UnivariatePiecewiseLinearObjective


[docs]class UnivariateProblem(UncertaintyProblem): """ Univariate uncertainty problem. """ def __init__(self, uncertainty_model: UnivariateDistribution, univariate_objective: UnivariatePiecewiseLinearObjective, i_state: Optional[int] = None, i_objective: Optional[int] = None) -> None: """ Constructor. Args: uncertainty_model: univariate uncertainty model to univariate_objective: objective function based on uncertainty i_state: indices of qubits representing uncertainty i_objective: index of qubit representing the objective value in the amplitude """ # determine number of target qubits num_target_qubits = uncertainty_model.num_target_qubits + 1 super().__init__(num_target_qubits) # store operators self._uncertainty_model = uncertainty_model self._univariate_objective = univariate_objective # set params if i_state is None: i_state = list(range(uncertainty_model.num_target_qubits)) self.i_state = i_state if i_objective is None: i_objective = uncertainty_model.num_target_qubits self.i_objective = i_objective
[docs] def value_to_estimation(self, value): return self._univariate_objective.value_to_estimation(value)
[docs] def required_ancillas(self): num_uncertainty_ancillas = self._uncertainty_model.required_ancillas() num_objective_ancillas = self._univariate_objective.required_ancillas() return max([num_uncertainty_ancillas, num_objective_ancillas])
[docs] def build(self, qc, q, q_ancillas=None, params=None): q_state = [q[i] for i in self.i_state] q_objective = q[self.i_objective] # apply uncertainty model self._uncertainty_model.build(qc, q_state, q_ancillas) # apply objective function self._univariate_objective.build(qc, q_state + [q_objective], q_ancillas)