Source code for qiskit.aqua.components.optimizers.gsls

# -*- coding: utf-8 -*-

# This code is part of Qiskit.
#
# (C) Copyright IBM 2018, 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""Line search with Gaussian-smoothed samples on a sphere."""

from typing import Dict, Optional, Tuple, List
import logging
import numpy as np

from qiskit.aqua import aqua_globals
from .optimizer import Optimizer

logger = logging.getLogger(__name__)


[docs]class GSLS(Optimizer): """Gaussian-smoothed Line Search. An implementation of the line search algorithm described in https://arxiv.org/pdf/1905.01332.pdf, using gradient approximation based on Gaussian-smoothed samples on a sphere. """ _OPTIONS = ['max_iter', 'max_eval', 'disp', 'sampling_radius', 'sample_size_factor', 'initial_step_size', 'min_step_size', 'step_size_multiplier', 'armijo_parameter', 'min_gradient_norm', 'max_failed_rejection_sampling'] # pylint:disable=unused-argument def __init__(self, max_iter: int = 10000, max_eval: int = 10000, disp: bool = False, sampling_radius: float = 1.0e-6, sample_size_factor: int = 1, initial_step_size: float = 1.0e-2, min_step_size: float = 1.0e-10, step_size_multiplier: float = 0.4, armijo_parameter: float = 1.0e-1, min_gradient_norm: float = 1e-8, max_failed_rejection_sampling: int = 50) -> None: """ Args: max_iter: Maximum number of iterations. max_eval: Maximum number of evaluations. disp: Set to True to display convergence messages. sampling_radius: Sampling radius to determine gradient estimate. sample_size_factor: The size of the sample set at each iteration is this number multiplied by the dimension of the problem, rounded to the nearest integer. initial_step_size: Initial step size for the descent algorithm. min_step_size: Minimum step size for the descent algorithm. step_size_multiplier: Step size reduction after unsuccessful steps, in the interval (0, 1). armijo_parameter: Armijo parameter for sufficient decrease criterion, in the interval (0, 1). min_gradient_norm: If the gradient norm is below this threshold, the algorithm stops. max_failed_rejection_sampling: Maximum number of attempts to sample points within bounds. """ super().__init__() for k, v in locals().items(): if k in self._OPTIONS: self._options[k] = v
[docs] def get_support_level(self) -> Dict[str, int]: """Return support level dictionary. Returns: A dictionary containing the support levels for different options. """ return { 'gradient': Optimizer.SupportLevel.ignored, 'bounds': Optimizer.SupportLevel.supported, 'initial_point': Optimizer.SupportLevel.required }
[docs] def optimize(self, num_vars: int, objective_function: callable, gradient_function: Optional[callable] = None, variable_bounds: Optional[List[Tuple[float, float]]] = None, initial_point: Optional[np.ndarray] = None) -> Tuple[np.ndarray, float, int]: super().optimize(num_vars, objective_function, gradient_function, variable_bounds, initial_point) if initial_point is None: initial_point = aqua_globals.random.normal(size=num_vars) else: initial_point = np.array(initial_point) if variable_bounds is None: var_lb = np.array([-np.inf] * num_vars) var_ub = np.array([np.inf] * num_vars) else: var_lb = np.array([l for (l, _) in variable_bounds]) var_ub = np.array([u for (_, u) in variable_bounds]) x, x_value, n_evals, _ = self.ls_optimize( num_vars, objective_function, initial_point, var_lb, var_ub ) return x, x_value, n_evals
[docs] def ls_optimize(self, n: int, obj_fun: callable, initial_point: np.ndarray, var_lb: np.ndarray, var_ub: np.ndarray) -> Tuple[np.ndarray, float, int, float]: """Run the line search optimization. Args: n: Dimension of the problem. obj_fun: Objective function. initial_point: Initial point. var_lb: Vector of lower bounds on the decision variables. Vector elements can be -np.inf if the corresponding variable is unbounded from below. var_ub: Vector of upper bounds on the decision variables. Vector elements can be np.inf if the corresponding variable is unbounded from below. Returns: Final iterate as a vector, corresponding objective function value, number of evaluations, and norm of the gradient estimate. Raises: ValueError: If the number of dimensions mismatches the size of the initial point or the length of the lower or upper bound. """ if len(initial_point) != n: raise ValueError('Size of the initial point mismatches the number of dimensions.') if len(var_lb) != n: raise ValueError('Length of the lower bound mismatches the number of dimensions.') if len(var_ub) != n: raise ValueError('Length of the upper bound mismatches the number of dimensions.') # Initialize counters and data iter_count = 0 n_evals = 0 prev_iter_successful = True prev_directions, prev_sample_set_x, prev_sample_set_y = None, None, None consecutive_fail_iter = 0 alpha = self._options['initial_step_size'] grad_norm = np.inf sample_set_size = int(round(self._options['sample_size_factor'] * n)) # Initial point x = initial_point x_value = obj_fun(x) n_evals += 1 while iter_count < self._options['max_iter'] \ and n_evals < self._options['max_eval']: # Determine set of sample points directions, sample_set_x = self.sample_set(n, x, var_lb, var_ub, sample_set_size) if n_evals + len(sample_set_x) + 1 >= self._options['max_eval']: # The evaluation budget is too small to allow for # another full iteration; we therefore exit now break sample_set_y = np.array([obj_fun(point) for point in sample_set_x]) n_evals += len(sample_set_x) # Expand sample set if we could not improve if not prev_iter_successful: directions = np.vstack((prev_directions, directions)) sample_set_x = np.vstack((prev_sample_set_x, sample_set_x)) sample_set_y = np.hstack((prev_sample_set_y, sample_set_y)) # Find gradient approximation and candidate point grad = self.gradient_approximation(n, x, x_value, directions, sample_set_x, sample_set_y) grad_norm = np.linalg.norm(grad) new_x = np.clip(x - alpha * grad, var_lb, var_ub) new_x_value = obj_fun(new_x) n_evals += 1 # Print information if self._options['disp']: print('Iter {:d}'.format(iter_count)) print('Point {} obj {}'.format(x, x_value)) print('Gradient {}'.format(grad)) print('Grad norm {} new_x_value {} step_size {}'.format(grad_norm, new_x_value, alpha)) print('Direction {}'.format(directions)) # Test Armijo condition for sufficient decrease if new_x_value <= x_value - self._options['armijo_parameter'] * alpha * grad_norm: # Accept point x, x_value = new_x, new_x_value alpha /= 2 * self._options['step_size_multiplier'] prev_iter_successful = True consecutive_fail_iter = 0 # Reset sample set prev_directions = None prev_sample_set_x = None prev_sample_set_y = None else: # Do not accept point alpha *= self._options['step_size_multiplier'] prev_iter_successful = False consecutive_fail_iter += 1 # Store sample set to enlarge it prev_directions = directions prev_sample_set_x, prev_sample_set_y = sample_set_x, sample_set_y iter_count += 1 # Check termination criterion if grad_norm <= self._options['min_gradient_norm'] \ or alpha <= self._options['min_step_size']: break return x, x_value, n_evals, grad_norm
[docs] def sample_points(self, n: int, x: np.ndarray, num_points: int ) -> Tuple[np.ndarray, np.ndarray]: """Sample ``num_points`` points around ``x`` on the ``n``-sphere of specified radius. The radius of the sphere is ``self._options['sampling_radius']``. Args: n: Dimension of the problem. x: Point around which the sample set is constructed. num_points: Number of points in the sample set. Returns: A tuple containing the sampling points and the directions. """ normal_samples = aqua_globals.random.normal(size=(num_points, n)) row_norms = np.linalg.norm(normal_samples, axis=1, keepdims=True) directions = normal_samples / row_norms points = x + self._options['sampling_radius'] * directions return points, directions
[docs] def sample_set(self, n: int, x: np.ndarray, var_lb: np.ndarray, var_ub: np.ndarray, num_points: int) -> Tuple[np.ndarray, np.ndarray]: """Construct sample set of given size. Args: n: Dimension of the problem. x: Point around which the sample set is constructed. var_lb: Vector of lower bounds on the decision variables. Vector elements can be -np.inf if the corresponding variable is unbounded from below. var_ub: Vector of lower bounds on the decision variables. Vector elements can be np.inf if the corresponding variable is unbounded from above. num_points: Number of points in the sample set. Returns: Matrices of (unit-norm) sample directions and sample points, one per row. Both matrices are 2D arrays of floats. Raises: RuntimeError: If not enough samples could be generated within the bounds. """ # Generate points uniformly on the sphere points, directions = self.sample_points(n, x, num_points) # Check bounds if (points >= var_lb).all() and (points <= var_ub).all(): # If all points are within bounds, return them return directions, (x + self._options['sampling_radius'] * directions) else: # Otherwise we perform rejection sampling until we have # enough points that satisfy the bounds indices = np.where((points >= var_lb).all(axis=1) & (points <= var_ub).all(axis=1))[0] accepted = directions[indices] num_trials = 0 while len(accepted) < num_points \ and num_trials < self._options['max_failed_rejection_sampling']: # Generate points uniformly on the sphere points, directions = self.sample_points(n, x, num_points) indices = np.where((points >= var_lb).all(axis=1) & (points <= var_ub).all(axis=1))[0] accepted = np.vstack((accepted, directions[indices])) num_trials += 1 # When we are at a corner point, the expected fraction of acceptable points may be # exponential small in the dimension of the problem. Thus, if we keep failing and # do not have enough points by now, we switch to a different method that guarantees # finding enough points, but they may not be uniformly distributed. if len(accepted) < num_points: points, directions = self.sample_points(n, x, num_points) to_be_flipped = (points < var_lb) | (points > var_ub) directions *= np.where(to_be_flipped, -1, 1) points = x + self._options['sampling_radius'] * directions indices = np.where((points >= var_lb).all(axis=1) & (points <= var_ub).all(axis=1))[0] accepted = np.vstack((accepted, directions[indices])) # If we still do not have enough sampling points, we have failed. if len(accepted) < num_points: raise RuntimeError('Could not generate enough samples ' 'within bounds; try smaller radius.') return (accepted[:num_points], x + self._options['sampling_radius'] * accepted[:num_points])
[docs] def gradient_approximation(self, n: int, x: np.ndarray, x_value: float, directions: np.ndarray, sample_set_x: np.ndarray, sample_set_y: np.ndarray) -> np.ndarray: """Construct gradient approximation from given sample. Args: n: Dimension of the problem. x: Point around which the sample set was constructed. x_value: Objective function value at x. directions: Directions of the sample points wrt the central point x, as a 2D array. sample_set_x: x-coordinates of the sample set, one point per row, as a 2D array. sample_set_y: Objective function values of the points in sample_set_x, as a 1D array. Returns: Gradient approximation at x, as a 1D array. """ ffd = sample_set_y - x_value gradient = float(n) / len(sample_set_y) * np.sum(ffd.reshape(len(sample_set_y), 1) / self._options['sampling_radius'] * directions, 0) return gradient