Source code for qiskit.aqua.components.neural_networks.quantum_generator

# -*- coding: utf-8 -*-

# This code is part of Qiskit.
#
# (C) Copyright IBM 2019, 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""Quantum Generator."""

from typing import Optional, List, Union
from copy import deepcopy
import numpy as np

from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit
from qiskit.circuit.library import TwoLocal
from qiskit.aqua import aqua_globals
from qiskit.aqua.components.optimizers import ADAM
from qiskit.aqua.components.uncertainty_models import \
    UniformDistribution, MultivariateUniformDistribution
from qiskit.aqua.components.uncertainty_models import UnivariateVariationalDistribution, \
    MultivariateVariationalDistribution
from qiskit.aqua import AquaError
from qiskit.aqua.components.neural_networks.generative_network import GenerativeNetwork
from qiskit.aqua.components.initial_states import Custom

# pylint: disable=invalid-name


[docs]class QuantumGenerator(GenerativeNetwork): """Quantum Generator. The quantum generator is a parametrized quantum circuit which can be trained with the :class:`~qiskit.aqua.algorithms.QGAN` algorithm to generate a quantum state which approximates the probability distribution of given training data. At the beginning of the training the parameters will be set randomly, thus, the output will is random. Throughout the training the quantum generator learns to represent the target distribution. Eventually, the trained generator can be used for state preparation e.g. in QAE. """ def __init__(self, bounds: np.ndarray, num_qubits: List[int], generator_circuit: Optional[Union[UnivariateVariationalDistribution, MultivariateVariationalDistribution, QuantumCircuit]] = None, init_params: Optional[Union[List[float], np.ndarray]] = None, snapshot_dir: Optional[str] = None) -> None: """ Args: bounds: k min/max data values [[min_1,max_1],...,[min_k,max_k]], given input data dim k num_qubits: k numbers of qubits to determine representation resolution, i.e. n qubits enable the representation of 2**n values [n_1,..., n_k] generator_circuit: a UnivariateVariationalDistribution for univariate data, a MultivariateVariationalDistribution for multivariate data, or a QuantumCircuit implementing the generator. init_params: 1D numpy array or list, Initialization for the generator's parameters. snapshot_dir: str or None, if not None save the optimizer's parameter after every update step to the given directory Raises: AquaError: Set multivariate variational distribution to represent multivariate data """ super().__init__() self._bounds = bounds self._num_qubits = num_qubits self.generator_circuit = generator_circuit if self.generator_circuit is None: entangler_map = [] if np.sum(num_qubits) > 2: for i in range(int(np.sum(num_qubits))): entangler_map.append([i, int(np.mod(i + 1, np.sum(num_qubits)))]) else: if np.sum(num_qubits) > 1: entangler_map.append([0, 1]) if len(num_qubits) > 1: num_qubits = list(map(int, num_qubits)) low = bounds[:, 0].tolist() high = bounds[:, 1].tolist() init_dist = MultivariateUniformDistribution(num_qubits, low=low, high=high) q = QuantumRegister(sum(num_qubits)) qc = QuantumCircuit(q) init_dist.build(qc, q) init_distribution = Custom(num_qubits=sum(num_qubits), circuit=qc) # Set variational form var_form = TwoLocal(sum(num_qubits), 'ry', 'cz', reps=1, initial_state=init_distribution, entanglement=entangler_map) if init_params is None: init_params = aqua_globals.random.rand(var_form.num_parameters) * 2 * 1e-2 # Set generator circuit self.generator_circuit = MultivariateVariationalDistribution(num_qubits, var_form, init_params, low=low, high=high) else: init_dist = UniformDistribution(sum(num_qubits), low=bounds[0], high=bounds[1]) q = QuantumRegister(sum(num_qubits), name='q') qc = QuantumCircuit(q) init_dist.build(qc, q) init_distribution = Custom(num_qubits=sum(num_qubits), circuit=qc) var_form = TwoLocal(sum(num_qubits), 'ry', 'cz', reps=1, initial_state=init_distribution, entanglement=entangler_map) if init_params is None: init_params = aqua_globals.random.rand(var_form.num_parameters) * 2 * 1e-2 # Set generator circuit self.generator_circuit = UnivariateVariationalDistribution( int(np.sum(num_qubits)), var_form, init_params, low=bounds[0], high=bounds[1]) if len(num_qubits) > 1: if isinstance(self.generator_circuit, MultivariateVariationalDistribution): pass else: raise AquaError('Set multivariate variational distribution ' 'to represent multivariate data') else: if isinstance(self.generator_circuit, UnivariateVariationalDistribution): pass else: raise AquaError('Set univariate variational distribution ' 'to represent univariate data') # Set optimizer for updating the generator network self._optimizer = ADAM(maxiter=1, tol=1e-6, lr=1e-3, beta_1=0.7, beta_2=0.99, noise_factor=1e-6, eps=1e-6, amsgrad=True, snapshot_dir=snapshot_dir) if np.ndim(self._bounds) == 1: bounds = np.reshape(self._bounds, (1, len(self._bounds))) else: bounds = self._bounds for j, prec in enumerate(self._num_qubits): # prepare data grid for dim j grid = np.linspace(bounds[j, 0], bounds[j, 1], (2 ** prec)) if j == 0: if len(self._num_qubits) > 1: self._data_grid = [grid] else: self._data_grid = grid self._grid_elements = grid elif j == 1: self._data_grid.append(grid) temp = [] for g_e in self._grid_elements: for g in grid: temp0 = [g_e] temp0.append(g) temp.append(temp0) self._grid_elements = temp else: self._data_grid.append(grid) temp = [] for g_e in self._grid_elements: for g in grid: temp0 = deepcopy(g_e) temp0.append(g) temp.append(temp0) self._grid_elements = deepcopy(temp) self._data_grid = np.array(self._data_grid) self._shots = None self._discriminator = None self._ret = {}
[docs] def set_seed(self, seed): """ Set seed. Args: seed (int): seed """ aqua_globals.random_seed = seed
[docs] def set_discriminator(self, discriminator): """ Set discriminator network. Args: discriminator (Discriminator): Discriminator used to compute the loss function. """ self._discriminator = discriminator
[docs] def construct_circuit(self, params=None): """ Construct generator circuit. Args: params (numpy.ndarray): parameters which should be used to run the generator, if None use self._params Returns: Instruction: construct the quantum circuit and return as gate """ q = QuantumRegister(sum(self._num_qubits), name='q') qc = QuantumCircuit(q) if params is None: self.generator_circuit.build(qc=qc, q=q) else: generator_circuit_copy = deepcopy(self.generator_circuit) generator_circuit_copy.params = params generator_circuit_copy.build(qc=qc, q=q) # return qc.copy(name='qc') return qc.to_instruction()
[docs] def get_output(self, quantum_instance, qc_state_in=None, params=None, shots=None): """ Get classical data samples from the generator. Running the quantum generator circuit results in a quantum state. To train this generator with a classical discriminator, we need to sample classical outputs by measuring the quantum state and mapping them to feature space defined by the training data. Args: quantum_instance (QuantumInstance): Quantum Instance, used to run the generator circuit. qc_state_in (QuantumCircuit): deprecated params (numpy.ndarray): array or None, parameters which should be used to run the generator, if None use self._params shots (int): if not None use a number of shots that is different from the number set in quantum_instance Returns: list: generated samples, array: sample occurrence in percentage """ instance_shots = quantum_instance.run_config.shots q = QuantumRegister(sum(self._num_qubits), name='q') qc = QuantumCircuit(q) qc.append(self.construct_circuit(params), q) if quantum_instance.is_statevector: pass else: c = ClassicalRegister(sum(self._num_qubits), name='c') qc.add_register(c) qc.measure(q, c) if shots is not None: quantum_instance.set_config(shots=shots) result = quantum_instance.execute(qc) generated_samples = [] if quantum_instance.is_statevector: result = result.get_statevector(qc) values = np.multiply(result, np.conj(result)) values = list(values.real) keys = [] for j in range(len(values)): keys.append(np.binary_repr(j, int(sum(self._num_qubits)))) else: result = result.get_counts(qc) keys = list(result) values = list(result.values()) values = [float(v) / np.sum(values) for v in values] generated_samples_weights = values for i, _ in enumerate(keys): index = 0 temp = [] for k, p in enumerate(self._num_qubits): bin_rep = 0 j = 0 while j < p: bin_rep += int(keys[i][index]) * 2 ** (int(p) - j - 1) j += 1 index += 1 if len(self._num_qubits) > 1: temp.append(self._data_grid[k][int(bin_rep)]) else: temp.append(self._data_grid[int(bin_rep)]) generated_samples.append(temp) self.generator_circuit._probabilities = generated_samples_weights if shots is not None: # Restore the initial quantum_instance configuration quantum_instance.set_config(shots=instance_shots) return generated_samples, generated_samples_weights
[docs] def loss(self, x, weights): # pylint: disable=arguments-differ """ Loss function for training the generator's parameters. Args: x (numpy.ndarray): sample label (equivalent to discriminator output) weights (numpy.ndarray): probability for measuring the sample Returns: float: loss function """ try: # pylint: disable=no-member loss = (-1) * np.dot(np.log(x).transpose(), weights) except Exception: # pylint: disable=broad-except loss = (-1) * np.dot(np.log(x), weights) return loss.flatten()
def _get_objective_function(self, quantum_instance, discriminator): """ Get objective function Args: quantum_instance (QuantumInstance): used to run the quantum circuit. discriminator (torch.nn.Module): discriminator network to compute the sample labels. Returns: objective_function: objective function for quantum generator optimization """ def objective_function(params): """ Objective function Args: params (numpy.ndarray): generator parameters Returns: self.loss: loss function """ generated_data, generated_prob = self.get_output(quantum_instance, params=params, shots=self._shots) prediction_generated = discriminator.get_label(generated_data, detach=True) return self.loss(prediction_generated, generated_prob) return objective_function
[docs] def train(self, quantum_instance=None, shots=None): """ Perform one training step w.r.t to the generator's parameters Args: quantum_instance (QuantumInstance): used to run the generator circuit. shots (int): Number of shots for hardware or qasm execution. Returns: dict: generator loss(float) and updated parameters (array). """ self._shots = shots # Force single optimization iteration self._optimizer._maxiter = 1 self._optimizer._t = 0 objective = self._get_objective_function(quantum_instance, self._discriminator) self.generator_circuit.params, loss, _ = self._optimizer.optimize( num_vars=len(self.generator_circuit.params), objective_function=objective, initial_point=self.generator_circuit.params ) self._ret['loss'] = loss self._ret['params'] = self.generator_circuit.params return self._ret