Source code for qiskit.aqua.algorithms.minimum_eigen_solvers.vqe

# -*- coding: utf-8 -*-

# This code is part of Qiskit.
#
# (C) Copyright IBM 2018, 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""The Variational Quantum Eigensolver algorithm.

See https://arxiv.org/abs/1304.3061
"""

from typing import Optional, List, Callable, Union, Dict
import logging
import warnings
from time import time
import numpy as np

from qiskit import ClassicalRegister, QuantumCircuit
from qiskit.circuit import Parameter
from qiskit.circuit.library import RealAmplitudes
from qiskit.providers import BaseBackend
from qiskit.aqua import QuantumInstance, AquaError
from qiskit.aqua.algorithms import QuantumAlgorithm
from qiskit.aqua.operators import (OperatorBase, ExpectationBase, ExpectationFactory, StateFn,
                                   CircuitStateFn, LegacyBaseOperator, ListOp, I, CircuitSampler)
from qiskit.aqua.components.optimizers import Optimizer, SLSQP
from qiskit.aqua.components.variational_forms import VariationalForm
from qiskit.aqua.utils.validation import validate_min
from ..vq_algorithm import VQAlgorithm, VQResult
from .minimum_eigen_solver import MinimumEigensolver, MinimumEigensolverResult

logger = logging.getLogger(__name__)

# disable check for var_forms, optimizer setter because of pylint bug
# pylint: disable=no-member


[docs]class VQE(VQAlgorithm, MinimumEigensolver): r"""The Variational Quantum Eigensolver algorithm. `VQE <https://arxiv.org/abs/1304.3061>`__ is a hybrid algorithm that uses a variational technique and interleaves quantum and classical computations in order to find the minimum eigenvalue of the Hamiltonian :math:`H` of a given system. An instance of VQE requires defining two algorithmic sub-components: a trial state (ansatz) from Aqua's :mod:`~qiskit.aqua.components.variational_forms`, and one of the classical :mod:`~qiskit.aqua.components.optimizers`. The ansatz is varied, via its set of parameters, by the optimizer, such that it works towards a state, as determined by the parameters applied to the variational form, that will result in the minimum expectation value being measured of the input operator (Hamiltonian). An optional array of parameter values, via the *initial_point*, may be provided as the starting point for the search of the minimum eigenvalue. This feature is particularly useful such as when there are reasons to believe that the solution point is close to a particular point. As an example, when building the dissociation profile of a molecule, it is likely that using the previous computed optimal solution as the starting initial point for the next interatomic distance is going to reduce the number of iterations necessary for the variational algorithm to converge. Aqua provides an `initial point tutorial <https://github.com/Qiskit/qiskit-tutorials-community/blob/master /chemistry/h2_vqe_initial_point.ipynb>`__ detailing this use case. The length of the *initial_point* list value must match the number of the parameters expected by the variational form being used. If the *initial_point* is left at the default of ``None``, then VQE will look to the variational form for a preferred value, based on its given initial state. If the variational form returns ``None``, then a random point will be generated within the parameter bounds set, as per above. If the variational form provides ``None`` as the lower bound, then VQE will default it to :math:`-2\pi`; similarly, if the variational form returns ``None`` as the upper bound, the default value will be :math:`2\pi`. .. note:: The VQE stores the parameters of ``var_form`` sorted by name to map the values provided by the optimizer to the circuit. This is done to ensure reproducible results, for example such that running the optimization twice with same random seeds yields the same result. Also, the ``optimal_point`` of the result object can be used as initial point of another VQE run by passing it as ``initial_point`` to the initializer. """ def __init__(self, operator: Optional[Union[OperatorBase, LegacyBaseOperator]] = None, var_form: Optional[Union[QuantumCircuit, VariationalForm]] = None, optimizer: Optional[Optimizer] = None, initial_point: Optional[np.ndarray] = None, expectation: Optional[ExpectationBase] = None, include_custom: bool = False, max_evals_grouped: int = 1, aux_operators: Optional[List[Optional[Union[OperatorBase, LegacyBaseOperator]]]] = None, callback: Optional[Callable[[int, np.ndarray, float, float], None]] = None, quantum_instance: Optional[Union[QuantumInstance, BaseBackend]] = None) -> None: """ Args: operator: Qubit operator of the Observable var_form: A parameterized circuit used as Ansatz for the wave function. optimizer: A classical optimizer. initial_point: An optional initial point (i.e. initial parameter values) for the optimizer. If ``None`` then VQE will look to the variational form for a preferred point and if not will simply compute a random one. expectation: The Expectation converter for taking the average value of the Observable over the var_form state function. When ``None`` (the default) an :class:`~qiskit.aqua.operators.expectations.ExpectationFactory` is used to select an appropriate expectation based on the operator and backend. When using Aer qasm_simulator backend, with paulis, it is however much faster to leverage custom Aer function for the computation but, although VQE performs much faster with it, the outcome is ideal, with no shot noise, like using a state vector simulator. If you are just looking for the quickest performance when choosing Aer qasm_simulator and the lack of shot noise is not an issue then set `include_custom` parameter here to ``True`` (defaults to ``False``). include_custom: When `expectation` parameter here is None setting this to ``True`` will allow the factory to include the custom Aer pauli expectation. max_evals_grouped: Max number of evaluations performed simultaneously. Signals the given optimizer that more than one set of parameters can be supplied so that potentially the expectation values can be computed in parallel. Typically this is possible when a finite difference gradient is used by the optimizer such that multiple points to compute the gradient can be passed and if computed in parallel improve overall execution time. aux_operators: Optional list of auxiliary operators to be evaluated with the eigenstate of the minimum eigenvalue main result and their expectation values returned. For instance in chemistry these can be dipole operators, total particle count operators so we can get values for these at the ground state. callback: a callback that can access the intermediate data during the optimization. Four parameter values are passed to the callback as follows during each evaluation by the optimizer for its current set of parameters as it works towards the minimum. These are: the evaluation count, the optimizer parameters for the variational form, the evaluated mean and the evaluated standard deviation.` quantum_instance: Quantum Instance or Backend """ validate_min('max_evals_grouped', max_evals_grouped, 1) if var_form is None: var_form = RealAmplitudes() if optimizer is None: optimizer = SLSQP() # set the initial point to the preferred parameters of the variational form if initial_point is None and hasattr(var_form, 'preferred_init_points'): initial_point = var_form.preferred_init_points self._max_evals_grouped = max_evals_grouped self._circuit_sampler = None self._expectation = expectation self._include_custom = include_custom self._expect_op = None self._operator = None super().__init__(var_form=var_form, optimizer=optimizer, cost_fn=self._energy_evaluation, initial_point=initial_point, quantum_instance=quantum_instance) self._ret = None self._eval_time = None self._optimizer.set_max_evals_grouped(max_evals_grouped) self._callback = callback if operator is not None: self.operator = operator self.aux_operators = aux_operators self._eval_count = 0 logger.info(self.print_settings()) @property def operator(self) -> Optional[OperatorBase]: """ Returns operator """ return self._operator @operator.setter def operator(self, operator: Union[OperatorBase, LegacyBaseOperator]) -> None: """ set operator """ if isinstance(operator, LegacyBaseOperator): operator = operator.to_opflow() self._operator = operator self._expect_op = None self._check_operator_varform() if self._expectation is None: self._try_set_expectation_value_from_factory() def _try_set_expectation_value_from_factory(self): if self.operator and self.quantum_instance: self.expectation = ExpectationFactory.build(operator=self.operator, backend=self.quantum_instance, include_custom=self._include_custom) @QuantumAlgorithm.quantum_instance.setter def quantum_instance(self, quantum_instance: Union[QuantumInstance, BaseBackend]) -> None: """ set quantum_instance """ super(VQE, self.__class__).quantum_instance.__set__(self, quantum_instance) if self._circuit_sampler is None: self._circuit_sampler = CircuitSampler(self._quantum_instance) else: self._circuit_sampler.quantum_instance = self._quantum_instance if self._expectation is None: self._try_set_expectation_value_from_factory() @property def expectation(self) -> ExpectationBase: """ The expectation value algorithm used to construct the expectation measurement from the observable. """ return self._expectation @expectation.setter def expectation(self, exp: ExpectationBase) -> None: self._expectation = exp self._expect_op = None @property def aux_operators(self) -> Optional[List[Optional[OperatorBase]]]: """ Returns aux operators """ return self._aux_operators @aux_operators.setter def aux_operators(self, aux_operators: Optional[List[Optional[Union[OperatorBase, LegacyBaseOperator]]]]) -> None: """ Set aux operators """ # We need to handle the array entries being Optional i.e. having value None self._aux_op_nones = None if isinstance(aux_operators, list): self._aux_op_nones = [op is None for op in aux_operators] zero_op = I.tensorpower(self.operator.num_qubits) * 0.0 converted = [op.to_opflow() if op else zero_op for op in aux_operators] # For some reason Chemistry passes aux_ops with 0 qubits and paulis sometimes. converted = [zero_op if op == 0 else op for op in converted] aux_operators = ListOp(converted) elif isinstance(aux_operators, LegacyBaseOperator): aux_operators = [aux_operators.to_opflow()] self._aux_operators = aux_operators def _check_operator_varform(self): """Check that the number of qubits of operator and variational form match.""" if self.operator is not None and self.var_form is not None: if self.operator.num_qubits != self.var_form.num_qubits: # try to set the number of qubits on the variational form, if possible try: self.var_form.num_qubits = self.operator.num_qubits self._var_form_params = sorted(self.var_form.parameters, key=lambda p: p.name) except AttributeError: raise AquaError("The number of qubits of the variational form does not match " "the operator, and the variational form does not allow setting " "the number of qubits using `num_qubits`.") @VQAlgorithm.optimizer.setter def optimizer(self, optimizer: Optimizer): """ Sets optimizer """ super(VQE, self.__class__).optimizer.__set__(self, optimizer) if optimizer is not None: optimizer.set_max_evals_grouped(self._max_evals_grouped) @property def setting(self): """Prepare the setting of VQE as a string.""" ret = "Algorithm: {}\n".format(self.__class__.__name__) params = "" for key, value in self.__dict__.items(): if key[0] == "_": if "initial_point" in key and value is None: params += "-- {}: {}\n".format(key[1:], "Random seed") else: params += "-- {}: {}\n".format(key[1:], value) ret += "{}".format(params) return ret
[docs] def print_settings(self): """ Preparing the setting of VQE into a string. Returns: str: the formatted setting of VQE """ ret = "\n" ret += "==================== Setting of {} ============================\n".format( self.__class__.__name__) ret += "{}".format(self.setting) ret += "===============================================================\n" if hasattr(self._var_form, 'setting'): ret += "{}".format(self._var_form.setting) elif hasattr(self._var_form, 'print_settings'): ret += "{}".format(self._var_form.print_settings()) elif isinstance(self._var_form, QuantumCircuit): ret += "var_form is a custom circuit" else: ret += "var_form has not been set" ret += "===============================================================\n" ret += "{}".format(self._optimizer.setting) ret += "===============================================================\n" return ret
[docs] def construct_circuit(self, parameter: Union[List[float], List[Parameter], np.ndarray] ) -> OperatorBase: r""" Generate the ansatz circuit and expectation value measurement, and return their runnable composition. Args: parameter: Parameters for the ansatz circuit. Returns: The Operator equalling the measurement of the ansatz :class:`StateFn` by the Observable's expectation :class:`StateFn`. Raises: AquaError: If no operator has been provided. """ if self.operator is None: raise AquaError("The operator was never provided.") # ensure operator and varform are compatible self._check_operator_varform() if isinstance(self.var_form, QuantumCircuit): param_dict = dict(zip(self._var_form_params, parameter)) wave_function = self.var_form.assign_parameters(param_dict) else: wave_function = self.var_form.construct_circuit(parameter) # If ExpectationValue was never created, create one now. if not self.expectation: self._try_set_expectation_value_from_factory() observable_meas = self.expectation.convert(StateFn(self.operator, is_measurement=True)) ansatz_circuit_op = CircuitStateFn(wave_function) return observable_meas.compose(ansatz_circuit_op).reduce()
[docs] def supports_aux_operators(self) -> bool: return True
def _run(self) -> 'VQEResult': """Run the algorithm to compute the minimum eigenvalue. Returns: The result of the VQE algorithm as ``VQEResult``. Raises: AquaError: Wrong setting of operator and backend. """ if self.operator is None: raise AquaError("The operator was never provided.") self._check_operator_varform() self._quantum_instance.circuit_summary = True self._eval_count = 0 vqresult = self.find_minimum(initial_point=self.initial_point, var_form=self.var_form, cost_fn=self._energy_evaluation, optimizer=self.optimizer) # TODO remove all former dictionary logic self._ret = {} self._ret['num_optimizer_evals'] = vqresult.optimizer_evals self._ret['min_val'] = vqresult.optimal_value self._ret['opt_params'] = vqresult.optimal_point self._ret['eval_time'] = vqresult.optimizer_time self._ret['opt_params_dict'] = vqresult.optimal_parameters if self._ret['num_optimizer_evals'] is not None and \ self._eval_count >= self._ret['num_optimizer_evals']: self._eval_count = self._ret['num_optimizer_evals'] self._eval_time = self._ret['eval_time'] logger.info('Optimization complete in %s seconds.\nFound opt_params %s in %s evals', self._eval_time, self._ret['opt_params'], self._eval_count) self._ret['eval_count'] = self._eval_count self._ret['energy'] = self.get_optimal_cost() self._ret['eigvals'] = np.asarray([self._ret['energy']]) self._ret['eigvecs'] = np.asarray([self.get_optimal_vector()]) result = VQEResult() result.combine(vqresult) result.eigenvalue = vqresult.optimal_value + 0j result.eigenstate = self.get_optimal_vector() if self.aux_operators: self._eval_aux_ops() # TODO remove when ._ret is deprecated result.aux_operator_eigenvalues = self._ret['aux_ops'][0] result.cost_function_evals = self._eval_count return result def _eval_aux_ops(self, threshold=1e-12): # Create new CircuitSampler to avoid breaking existing one's caches. sampler = CircuitSampler(self.quantum_instance) aux_op_meas = self.expectation.convert(StateFn(self.aux_operators, is_measurement=True)) aux_op_expect = aux_op_meas.compose(CircuitStateFn(self.get_optimal_circuit())) values = np.real(sampler.convert(aux_op_expect).eval()) # Discard values below threshold aux_op_results = (values * (np.abs(values) > threshold)) # Deal with the aux_op behavior where there can be Nones or Zero qubit Paulis in the list self._ret['aux_ops'] = [None if is_none else [result] for (is_none, result) in zip(self._aux_op_nones, aux_op_results)] self._ret['aux_ops'] = np.array([self._ret['aux_ops']])
[docs] def compute_minimum_eigenvalue( self, operator: Optional[Union[OperatorBase, LegacyBaseOperator]] = None, aux_operators: Optional[List[Optional[Union[OperatorBase, LegacyBaseOperator]]]] = None ) -> MinimumEigensolverResult: super().compute_minimum_eigenvalue(operator, aux_operators) return self._run()
def _energy_evaluation(self, parameters: Union[List[float], np.ndarray] ) -> Union[float, List[float]]: """Evaluate energy at given parameters for the variational form. This is the objective function to be passed to the optimizer that is used for evaluation. Args: parameters: The parameters for the variational form. Returns: Energy of the hamiltonian of each parameter. Raises: RuntimeError: If the variational form has no parameters. """ if not self._expect_op: self._expect_op = self.construct_circuit(self._var_form_params) num_parameters = self.var_form.num_parameters if self._var_form.num_parameters == 0: raise RuntimeError('The var_form cannot have 0 parameters.') parameter_sets = np.reshape(parameters, (-1, num_parameters)) # Create dict associating each parameter with the lists of parameterization values for it param_bindings = dict(zip(self._var_form_params, parameter_sets.transpose().tolist())) start_time = time() sampled_expect_op = self._circuit_sampler.convert(self._expect_op, params=param_bindings) means = np.real(sampled_expect_op.eval()) if self._callback is not None: variance = np.real(self._expectation.compute_variance(sampled_expect_op)) estimator_error = np.sqrt(variance / self.quantum_instance.run_config.shots) for i, param_set in enumerate(parameter_sets): self._eval_count += 1 self._callback(self._eval_count, param_set, means[i], estimator_error[i]) else: self._eval_count += len(means) end_time = time() logger.info('Energy evaluation returned %s - %.5f (ms), eval count: %s', means, (end_time - start_time) * 1000, self._eval_count) return means if len(means) > 1 else means[0]
[docs] def get_optimal_cost(self) -> float: """Get the minimal cost or energy found by the VQE.""" if 'opt_params' not in self._ret: raise AquaError("Cannot return optimal cost before running the " "algorithm to find optimal params.") return self._ret['min_val']
[docs] def get_optimal_circuit(self) -> QuantumCircuit: """Get the circuit with the optimal parameters.""" if 'opt_params' not in self._ret: raise AquaError("Cannot find optimal circuit before running the " "algorithm to find optimal params.") if isinstance(self.var_form, VariationalForm): return self._var_form.construct_circuit(self._ret['opt_params']) return self.var_form.assign_parameters(self._ret['opt_params_dict'])
[docs] def get_optimal_vector(self) -> Union[List[float], Dict[str, int]]: """Get the simulation outcome of the optimal circuit. """ # pylint: disable=import-outside-toplevel from qiskit.aqua.utils.run_circuits import find_regs_by_name if 'opt_params' not in self._ret: raise AquaError("Cannot find optimal vector before running the " "algorithm to find optimal params.") qc = self.get_optimal_circuit() if self._quantum_instance.is_statevector: ret = self._quantum_instance.execute(qc) self._ret['min_vector'] = ret.get_statevector(qc) else: c = ClassicalRegister(qc.width(), name='c') q = find_regs_by_name(qc, 'q') qc.add_register(c) qc.barrier(q) qc.measure(q, c) ret = self._quantum_instance.execute(qc) self._ret['min_vector'] = ret.get_counts(qc) return self._ret['min_vector']
@property def optimal_params(self) -> List[float]: """The optimal parameters for the variational form.""" if 'opt_params' not in self._ret: raise AquaError("Cannot find optimal params before running the algorithm.") return self._ret['opt_params']
class VQEResult(VQResult, MinimumEigensolverResult): """ VQE Result.""" @property def cost_function_evals(self) -> int: """ Returns number of cost optimizer evaluations """ return self.get('cost_function_evals') @cost_function_evals.setter def cost_function_evals(self, value: int) -> None: """ Sets number of cost function evaluations """ self.data['cost_function_evals'] = value def __getitem__(self, key: object) -> object: if key == 'eval_count': warnings.warn('eval_count deprecated, use cost_function_evals property.', DeprecationWarning) return super().__getitem__('cost_function_evals') try: return VQResult.__getitem__(self, key) except KeyError: return MinimumEigensolverResult.__getitem__(self, key)