Source code for qiskit.aqua.algorithms.amplitude_estimators.ae

# -*- coding: utf-8 -*-

# This code is part of Qiskit.
#
# (C) Copyright IBM 2018, 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""The Quantum Phase Estimation-based Amplitude Estimation algorithm."""

from typing import Optional, Union, List, Tuple
import warnings
import logging
from collections import OrderedDict
import numpy as np
from scipy.stats import chi2, norm
from scipy.optimize import bisect

from qiskit import QuantumCircuit
from qiskit.circuit.library import QFT
from qiskit.providers import BaseBackend
from qiskit.aqua import QuantumInstance, AquaError
from qiskit.aqua.utils import CircuitFactory
from qiskit.aqua.circuits import PhaseEstimationCircuit
from qiskit.aqua.components.iqfts import IQFT
from qiskit.aqua.utils.validation import validate_min
from .ae_algorithm import AmplitudeEstimationAlgorithm
from .ae_utils import pdf_a, derivative_log_pdf_a, bisect_max

logger = logging.getLogger(__name__)

# pylint: disable=invalid-name


[docs]class AmplitudeEstimation(AmplitudeEstimationAlgorithm): r"""The Quantum Phase Estimation-based Amplitude Estimation algorithm. This class implements the original Quantum Amplitude Estimation (QAE) algorithm, introduced by https://arxiv.org/abs/quant-ph/0005055. This (original) version uses quantum phase estimation along with a set of m ancilla qubits to find an estimate, that is restricted to the grid \{sin^2(\pi y / 2^m) : y = 0, ..., 2^{m-1}\}. Using a maximum likelihood post processing, this grid constraint can be circumvented. This improved estimator is implemented as well, see https://arxiv.org/abs/1912.05559 Appendix A for more detail. """ def __init__(self, num_eval_qubits: int, a_factory: Optional[CircuitFactory] = None, q_factory: Optional[CircuitFactory] = None, i_objective: Optional[int] = None, iqft: Optional[Union[QuantumCircuit, IQFT]] = None, quantum_instance: Optional[Union[QuantumInstance, BaseBackend]] = None) -> None: r""" Args: num_eval_qubits: Number of evaluation qubits, has a min. value of 1. a_factory: The CircuitFactory subclass object representing the problem unitary. q_factory: The CircuitFactory subclass object representing an amplitude estimation sample (based on a_factory). i_objective: The index of the objective qubit, i.e. the qubit marking 'good' solutions with the state \|1> and 'bad' solutions with the state \|0>. iqft: The Inverse Quantum Fourier Transform component, defaults to using a standard IQFT when None quantum_instance: Quantum Instance or Backend """ validate_min('num_eval_qubits', num_eval_qubits, 1) super().__init__(a_factory, q_factory, i_objective, quantum_instance) # get parameters self._m = num_eval_qubits self._M = 2 ** num_eval_qubits if isinstance(iqft, IQFT): warnings.warn('The qiskit.aqua.components.iqfts.IQFT module is deprecated as of 0.7.0 ' 'and will be removed no earlier than 3 months after the release. ' 'You should pass a QuantumCircuit instead, see ' 'qiskit.circuit.library.QFT and the .inverse() method.', DeprecationWarning, stacklevel=2) self._iqft = iqft or QFT(self._m).inverse() self._circuit = None self._ret = {} @property def _num_qubits(self) -> int: """Return the number of qubits needed in the circuit. Returns: The total number of qubits. """ if self.a_factory is None: # if A factory is not set, no qubits are specified return 0 num_ancillas = self.q_factory.required_ancillas_controlled() num_qubits = self.a_factory.num_target_qubits + self._m + num_ancillas return num_qubits
[docs] def construct_circuit(self, measurement: bool = False) -> QuantumCircuit: """Construct the Amplitude Estimation quantum circuit. Args: measurement: Boolean flag to indicate if measurements should be included in the circuit. Returns: The QuantumCircuit object for the constructed circuit. """ pec = PhaseEstimationCircuit( iqft=self._iqft, num_ancillae=self._m, state_in_circuit_factory=self.a_factory, unitary_circuit_factory=self.q_factory ) self._circuit = pec.construct_circuit(measurement=measurement) return self._circuit
def _evaluate_statevector_results(self, probabilities: Union[List[float], np.ndarray] ) -> Tuple[OrderedDict, OrderedDict]: """Evaluate the results from statevector simulation. Given the probabilities from statevector simulation of the QAE circuit, compute the probabilities that the measurements y/gridpoints a are the best estimate. Args: probabilities: The probabilities obtained from the statevector simulation, i.e. real(statevector * statevector.conj())[0] Returns: Dictionaries containing the a gridpoints with respective probabilities and y measurements with respective probabilities, in this order. """ # map measured results to estimates y_probabilities = OrderedDict() for i, probability in enumerate(probabilities): b = '{0:b}'.format(i).rjust(self._num_qubits, '0')[::-1] y = int(b[:self._m], 2) y_probabilities[y] = y_probabilities.get(y, 0) + probability a_probabilities = OrderedDict() for y, probability in y_probabilities.items(): if y >= int(self._M / 2): y = self._M - y # due to the finite accuracy of the sine, we round the result to 7 decimals a = np.round(np.power(np.sin(y * np.pi / 2 ** self._m), 2), decimals=7) a_probabilities[a] = a_probabilities.get(a, 0) + probability return a_probabilities, y_probabilities def _compute_fisher_information(self, observed: bool = False) -> float: """Computes the Fisher information for the output of the previous run. Args: observed: If True, the observed Fisher information is returned, otherwise the expected Fisher information. Returns: The Fisher information. """ fisher_information = None mlv = self._ret['ml_value'] # MLE in [0,1] m = self._m if observed: ai = np.asarray(self._ret['values']) pi = np.asarray(self._ret['probabilities']) # Calculate the observed Fisher information fisher_information = sum(p * derivative_log_pdf_a(a, mlv, m)**2 for p, a in zip(pi, ai)) else: def integrand(x): return (derivative_log_pdf_a(x, mlv, m))**2 * pdf_a(x, mlv, m) M = 2**m grid = np.sin(np.pi * np.arange(M / 2 + 1) / M)**2 fisher_information = sum(integrand(x) for x in grid) return fisher_information def _fisher_confint(self, alpha: float, observed: bool = False) -> List[float]: """Compute the Fisher information confidence interval for the MLE of the previous run. Args: alpha: Specifies the (1 - alpha) confidence level (0 < alpha < 1). observed: If True, the observed Fisher information is used to construct the confidence interval, otherwise the expected Fisher information. Returns: The Fisher information confidence interval. """ shots = self._ret['shots'] mle = self._ret['ml_value'] # approximate the standard deviation of the MLE and construct the confidence interval std = np.sqrt(shots * self._compute_fisher_information(observed)) ci = mle + norm.ppf(1 - alpha / 2) / std * np.array([-1, 1]) # transform the confidence interval from [0, 1] to the target interval return [self.a_factory.value_to_estimation(bound) for bound in ci] def _likelihood_ratio_confint(self, alpha: float) -> List[float]: """Compute the likelihood ratio confidence interval for the MLE of the previous run. Args: alpha: Specifies the (1 - alpha) confidence level (0 < alpha < 1). Returns: The likelihood ratio confidence interval. """ # Compute the two intervals in which we the look for values above # the likelihood ratio: the two bubbles next to the QAE estimate M = 2**self._m qae = self._ret['value'] y = int(np.round(M * np.arcsin(np.sqrt(qae)) / np.pi)) if y == 0: right_of_qae = np.sin(np.pi * (y + 1) / M)**2 bubbles = [qae, right_of_qae] elif y == int(M / 2): # remember, M = 2^m is a power of 2 left_of_qae = np.sin(np.pi * (y - 1) / M)**2 bubbles = [left_of_qae, qae] else: left_of_qae = np.sin(np.pi * (y - 1) / M)**2 right_of_qae = np.sin(np.pi * (y + 1) / M)**2 bubbles = [left_of_qae, qae, right_of_qae] # likelihood function ai = np.asarray(self._ret['values']) pi = np.asarray(self._ret['probabilities']) m = self._m shots = self._ret['shots'] def loglikelihood(a): return np.sum(shots * pi * np.log(pdf_a(ai, a, m))) # The threshold above which the likelihoods are in the # confidence interval loglik_mle = loglikelihood(self._ret['ml_value']) thres = loglik_mle - chi2.ppf(1 - alpha, df=1) / 2 def cut(x): return loglikelihood(x) - thres # Store the boundaries of the confidence interval # It's valid to start off with the zero-width confidence interval, since the maximum # of the likelihood function is guaranteed to be over the threshold, and if alpha = 0 # that's the valid interval lower = upper = self._ret['ml_value'] # Check the two intervals/bubbles: check if they surpass the # threshold and if yes add the part that does to the CI for a, b in zip(bubbles[:-1], bubbles[1:]): # Compute local maximum and perform a bisect search between # the local maximum and the bubble boundaries locmax, val = bisect_max(loglikelihood, a, b, retval=True) if val >= thres: # Bisect pre-condition is that the function has different # signs at the boundaries of the interval we search in if cut(a) * cut(locmax) < 0: left = bisect(cut, a, locmax) lower = np.minimum(lower, left) if cut(locmax) * cut(b) < 0: right = bisect(cut, locmax, b) upper = np.maximum(upper, right) # Put together CI ci = [lower, upper] return [self.a_factory.value_to_estimation(bound) for bound in ci]
[docs] def confidence_interval(self, alpha: float, kind: str = 'likelihood_ratio') -> List[float]: """Compute the (1 - alpha) confidence interval. Args: alpha: Confidence level: compute the (1 - alpha) confidence interval. kind: The method to compute the confidence interval, can be 'fisher', 'observed_fisher' or 'likelihood_ratio' (default) Returns: The (1 - alpha) confidence interval of the specified kind. Raises: AquaError: If 'mle' is not in self._ret.keys() (i.e. `run` was not called yet). NotImplementedError: If the confidence interval method `kind` is not implemented. """ # check if AE did run already if 'mle' not in self._ret.keys(): raise AquaError('Call run() first!') # if statevector simulator the estimate is exact if self._quantum_instance.is_statevector: return 2 * [self._ret['mle']] if kind in ['likelihood_ratio', 'lr']: return self._likelihood_ratio_confint(alpha) if kind in ['fisher', 'fi']: return self._fisher_confint(alpha, observed=False) if kind in ['observed_fisher', 'observed_information', 'oi']: return self._fisher_confint(alpha, observed=True) raise NotImplementedError('CI `{}` is not implemented.'.format(kind))
def _run_mle(self) -> None: """Compute the Maximum Likelihood Estimator (MLE). Returns: The MLE for the previous AE run. Note: Before calling this method, call the method `run` of the AmplitudeEstimation instance. """ M = self._M qae = self._ret['value'] # likelihood function ai = np.asarray(self._ret['values']) pi = np.asarray(self._ret['probabilities']) m = self._m shots = self._ret['shots'] def loglikelihood(a): return np.sum(shots * pi * np.log(pdf_a(ai, a, m))) # y is pretty much an integer, but to map 1.9999 to 2 we must first # use round and then int conversion y = int(np.round(M * np.arcsin(np.sqrt(qae)) / np.pi)) # Compute the two intervals in which are candidates for containing # the maximum of the log-likelihood function: the two bubbles next to # the QAE estimate if y == 0: right_of_qae = np.sin(np.pi * (y + 1) / M)**2 bubbles = [qae, right_of_qae] elif y == int(M / 2): # remember, M = 2^m is a power of 2 left_of_qae = np.sin(np.pi * (y - 1) / M)**2 bubbles = [left_of_qae, qae] else: left_of_qae = np.sin(np.pi * (y - 1) / M)**2 right_of_qae = np.sin(np.pi * (y + 1) / M)**2 bubbles = [left_of_qae, qae, right_of_qae] # Find global maximum amongst the two local maxima a_opt = qae loglik_opt = loglikelihood(a_opt) for a, b in zip(bubbles[:-1], bubbles[1:]): locmax, val = bisect_max(loglikelihood, a, b, retval=True) if val > loglik_opt: a_opt = locmax loglik_opt = val # Convert the value to an estimation val_opt = self.a_factory.value_to_estimation(a_opt) # Store MLE and the MLE mapped to an estimation self._ret['ml_value'] = a_opt self._ret['mle'] = val_opt def _run(self) -> dict: # check if A factory has been set if self.a_factory is None: raise AquaError("a_factory must be set!") if self._quantum_instance.is_statevector: self.construct_circuit(measurement=False) # run circuit on statevector simulator ret = self._quantum_instance.execute(self._circuit) state_vector = np.asarray([ret.get_statevector(self._circuit)]) self._ret['statevector'] = state_vector # get state probabilities state_probabilities = np.real( state_vector.conj() * state_vector)[0] # evaluate results a_probabilities, y_probabilities = self._evaluate_statevector_results( state_probabilities) # store number of shots: convention is 1 shot for statevector, # needed so that MLE works! self._ret['shots'] = 1 else: # run circuit on QASM simulator self.construct_circuit(measurement=True) ret = self._quantum_instance.execute(self._circuit) # get counts self._ret['counts'] = ret.get_counts() # construct probabilities y_probabilities = {} a_probabilities = {} shots = self._quantum_instance._run_config.shots for state, counts in ret.get_counts().items(): y = int(state.replace(' ', '')[:self._m][::-1], 2) p = counts / shots y_probabilities[y] = p a = np.round(np.power(np.sin(y * np.pi / 2 ** self._m), 2), decimals=7) a_probabilities[a] = a_probabilities.get(a, 0.0) + p # store shots self._ret['shots'] = shots # construct a_items and y_items a_items = [(a, p) for (a, p) in a_probabilities.items() if p > 1e-6] y_items = [(y, p) for (y, p) in y_probabilities.items() if p > 1e-6] a_items = list(a_probabilities.items()) y_items = list(y_probabilities.items()) a_items = sorted(a_items) y_items = sorted(y_items) self._ret['a_items'] = a_items self._ret['y_items'] = y_items # map estimated values to original range and extract probabilities self._ret['mapped_values'] = [self.a_factory.value_to_estimation( a_item[0]) for a_item in self._ret['a_items']] self._ret['values'] = [a_item[0] for a_item in self._ret['a_items']] self._ret['y_values'] = [y_item[0] for y_item in y_items] self._ret['probabilities'] = [a_item[1] for a_item in self._ret['a_items']] self._ret['mapped_items'] = [(self._ret['mapped_values'][i], self._ret['probabilities'][i]) for i in range(len(self._ret['mapped_values']))] # determine most likely estimator self._ret['value'] = None # estimate in [0,1] self._ret['estimation'] = None # estimate mapped to right interval self._ret['max_probability'] = 0 for val, (est, prob) in zip(self._ret['values'], self._ret['mapped_items']): if prob > self._ret['max_probability']: self._ret['max_probability'] = prob self._ret['estimation'] = est self._ret['value'] = val # count the number of Q-oracle calls self._ret['num_oracle_queries'] = self._M - 1 # get MLE self._run_mle() # get 95% confidence interval alpha = 0.05 kind = 'likelihood_ratio' # empirically the most precise kind self._ret['95%_confidence_interval'] = self.confidence_interval(alpha, kind) return self._ret