qiskit.algorithms.gradients

Gradients (qiskit.algorithms.gradients)

Base Classes

BaseEstimatorGradient(estimator[, options, ...])

Base class for an EstimatorGradient to compute the gradients of the expectation value.

BaseQGT(estimator[, phase_fix, ...])

Base class to computes the Quantum Geometric Tensor (QGT) given a pure, parameterized quantum state.

BaseSamplerGradient(sampler[, options])

Base class for a SamplerGradient to compute the gradients of the sampling probability.

EstimatorGradientResult(gradients, metadata, ...)

Result of EstimatorGradient.

SamplerGradientResult(gradients, metadata, ...)

Result of SamplerGradient.

QGTResult(qgts, derivative_type, metadata, ...)

Result of QGT.

Finite Differences

FiniteDiffEstimatorGradient(estimator, epsilon)

Compute the gradients of the expectation values by finite difference method [1].

FiniteDiffSamplerGradient(sampler, epsilon)

Compute the gradients of the sampling probability by finite difference method [1].

Linear Combination of Unitaries

LinCombEstimatorGradient(estimator[, ...])

Compute the gradients of the expectation values.

LinCombSamplerGradient(sampler[, options])

Compute the gradients of the sampling probability.

LinCombQGT(estimator[, phase_fix, ...])

Computes the Quantum Geometric Tensor (QGT) given a pure, parameterized quantum state.

Parameter Shift Rules

ParamShiftEstimatorGradient(estimator[, ...])

Compute the gradients of the expectation values by the parameter shift rule [1].

ParamShiftSamplerGradient(sampler[, options])

Compute the gradients of the sampling probability by the parameter shift rule [1].

Quantum Fisher Information

QFIResult(qfis, metadata, options)

Result of QFI.

QFI(qgt[, options])

Computes the Quantum Fisher Information (QFI) given a pure, parameterized quantum state.

Classical Methods

ReverseEstimatorGradient([derivative_type])

Estimator gradients with the classically efficient reverse mode.

ReverseQGT([phase_fix, derivative_type])

QGT calculation with the classically efficient reverse mode.

Simultaneous Perturbation Stochastic Approximation

SPSAEstimatorGradient(estimator, epsilon[, ...])

Compute the gradients of the expectation value by the Simultaneous Perturbation Stochastic Approximation (SPSA) [1].

SPSASamplerGradient(sampler, epsilon[, ...])

Compute the gradients of the sampling probability by the Simultaneous Perturbation Stochastic Approximation (SPSA) [1].