Chi¶
-
class
Chi
(data, input_dims=None, output_dims=None)[source]¶ Bases:
qiskit.quantum_info.operators.channel.quantum_channel.QuantumChannel
Pauli basis Chi-matrix representation of a quantum channel.
The Chi-matrix representation of an \(n\)-qubit quantum channel \(\mathcal{E}\) is a matrix \(\chi\) such that the evolution of a
DensityMatrix
\(\rho\) is given by\[\mathcal{E}(ρ) = \sum_{i, j} \chi_{i,j} P_i ρ P_j\]where \([P_0, P_1, ..., P_{4^{n}-1}]\) is the \(n\)-qubit Pauli basis in lexicographic order. It is related to the
Choi
representation by a change of basis of the Choi-matrix into the Pauli basis.See reference [1] for further details.
References
C.J. Wood, J.D. Biamonte, D.G. Cory, Tensor networks and graphical calculus for open quantum systems, Quant. Inf. Comp. 15, 0579-0811 (2015). arXiv:1111.6950 [quant-ph]
Initialize a quantum channel Chi-matrix operator.
- Parameters
(QuantumCircuit or (data) – Instruction or BaseOperator or matrix): data to initialize superoperator.
input_dims (tuple) – the input subsystem dimensions. [Default: None]
output_dims (tuple) – the output subsystem dimensions. [Default: None]
- Raises
QiskitError – if input data is not an N-qubit channel or cannot be initialized as a Chi-matrix.
- Additional Information:
If the input or output dimensions are None, they will be automatically determined from the input data. The Chi matrix representation is only valid for N-qubit channels.
Methods
Return the adjoint quantum channel.
Return the operator composition with another Chi.
Return the conjugate quantum channel.
Make a deep copy of current operator.
Return the right multiplied operator self * other.
Return the reverse-order tensor product with another Chi.
Return tuple of input dimension for specified subsystems.
Test if Choi-matrix is completely-positive (CP)
Return True if completely-positive trace-preserving (CPTP).
Test if a channel is trace-preserving (TP)
Return True if QuantumChannel is a unitary channel.
Return tuple of output dimension for specified subsystems.
Return the power of the quantum channel.
Return a shallow copy with reshaped input and output subsystem dimensions.
Return the tensor product with another Chi.
Convert to a Kraus or UnitaryGate circuit instruction.
Try to convert channel to a unitary representation Operator.
Return the transpose quantum channel.
Attributes
-
atol
= 1e-08¶
-
data
¶ Return data.
-
dim
¶ Return tuple (input_shape, output_shape).
-
num_qubits
¶ Return the number of qubits if a N-qubit operator or None otherwise.
-
qargs
¶ Return the qargs for the operator.
-
rtol
= 1e-05¶
-
settings
¶ Return operator settings.