CobylaOptimizer¶
-
class
CobylaOptimizer
(rhobeg=1.0, rhoend=0.0001, maxfun=1000, disp=None, catol=0.0002, trials=1, clip=100.0)[source]¶ Bases:
qiskit.optimization.algorithms.multistart_optimizer.MultiStartOptimizer
The SciPy COBYLA optimizer wrapped as an Qiskit
OptimizationAlgorithm
.This class provides a wrapper for
scipy.optimize.fmin_cobyla
(https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.optimize.fmin_cobyla.html) to be used within the optimization module. The arguments forfmin_cobyla
are passed via the constructor.Examples
>>> from qiskit.optimization.problems import QuadraticProgram >>> from qiskit.optimization.algorithms import CobylaOptimizer >>> problem = QuadraticProgram() >>> # specify problem here >>> optimizer = CobylaOptimizer() >>> result = optimizer.solve(problem)
Initializes the CobylaOptimizer.
This initializer takes the algorithmic parameters of COBYLA and stores them for later use of
fmin_cobyla
whensolve()
is invoked. This optimizer can be applied to find a (local) optimum for problems consisting of only continuous variables.- Parameters
rhobeg (
float
) – Reasonable initial changes to the variables.rhoend (
float
) – Final accuracy in the optimization (not precisely guaranteed). This is a lower bound on the size of the trust region.disp (
Optional
[int
]) – Controls the frequency of output; 0 implies no output. Feasible values are {0, 1, 2, 3}.maxfun (
int
) – Maximum number of function evaluations.catol (
float
) – Absolute tolerance for constraint violations.trials (
int
) – The number of trials for multi-start method. The first trial is solved with the initial guess of zero. If more than one trial is specified then initial guesses are uniformly drawn from[lowerbound, upperbound]
with potential clipping.clip (
float
) – Clipping parameter for the initial guesses in the multi-start method. If a variable is unbounded then the lower bound and/or upper bound are replaced with the-clip
orclip
values correspondingly for the initial guesses.
Methods
Checks whether a given problem can be solved with this optimizer.
Checks whether a given problem can be solved with the optimizer implementing this method.
Applies a multi start method given a local optimizer.
Tries to solves the given problem using the optimizer.
Attributes
-
clip
¶ Returns the clip value for this optimizer.
- Return type
float
- Returns
The clip value.
-
trials
¶ Returns the number of trials for this optimizer.
- Return type
int
- Returns
The number of trials.