RZZGate¶
-
class
RZZGate
(theta)[source]¶ Bases:
qiskit.circuit.gate.Gate
A parametric 2-qubit \(Z \otimes Z\) interaction (rotation about ZZ).
This gate is symmetric, and is maximally entangling at \(\theta = \pi/2\).
Circuit Symbol:
q_0: ───■──── │zz(θ) q_1: ───■────
Matrix Representation:
\[ \begin{align}\begin{aligned}\newcommand{\th}{\frac{\theta}{2}}\\\begin{split}R_{ZZ}(\theta) = exp(-i \th Z{\otimes}Z) = \begin{pmatrix} e^{-i \th} & 0 & 0 & 0 \\ 0 & e^{i \th} & 0 & 0 \\ 0 & 0 & e^{i \th} & 0 \\ 0 & 0 & 0 & e^{-i \th} \end{pmatrix}\end{split}\end{aligned}\end{align} \]This is a direct sum of RZ rotations, so this gate is equivalent to a uniformly controlled (multiplexed) RZ gate:
\[\begin{split}R_{ZZ}(\theta) = \begin{pmatrix} RZ(\theta) & 0 \\ 0 & RZ(-\theta) \end{pmatrix}\end{split}\]Examples:
\[R_{ZZ}(\theta = 0) = I\]\[R_{ZZ}(\theta = 2\pi) = -I\]\[R_{ZZ}(\theta = \pi) = - Z \otimes Z\]\[\begin{split}R_{ZZ}(\theta = \frac{\pi}{2}) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1-i & 0 & 0 & 0 \\ 0 & 1+i & 0 & 0 \\ 0 & 0 & 1+i & 0 \\ 0 & 0 & 0 & 1-i \end{pmatrix}\end{split}\]Create new RZZ gate.
Methods Defined Here
Return inverse RZZ gate (i.e.
Attributes
-
decompositions
¶ Get the decompositions of the instruction from the SessionEquivalenceLibrary.
-
definition
¶ Return definition in terms of other basic gates.
-
duration
¶ Get the duration.
-
label
¶ Return instruction label
- Return type
str
-
params
¶ return instruction params.
-
unit
¶ Get the time unit of duration.
-