LinearPauliRotations¶
-
class
LinearPauliRotations
(num_state_qubits=None, slope=1, offset=0, basis='Y', name='LinRot')[source]¶ Bases:
qiskit.circuit.library.arithmetic.functional_pauli_rotations.FunctionalPauliRotations
Linearly-controlled X, Y or Z rotation.
For a register of state qubits \(|x\rangle\), a target qubit \(|0\rangle\) and the basis
'Y'
this circuit acts as:q_0: ─────────────────────────■───────── ... ────────────────────── │ . │ q_(n-1): ─────────────────────────┼───────── ... ───────────■────────── ┌────────────┐ ┌───────┴───────┐ ┌─────────┴─────────┐ q_n: ─┤ RY(offset) ├──┤ RY(2^0 slope) ├ ... ┤ RY(2^(n-1) slope) ├ └────────────┘ └───────────────┘ └───────────────────┘
This can for example be used to approximate linear functions, with \(a/2 =\)
slope
and \(b/2 =\)offset
and the basis'Y'
:\[|x\rangle |0\rangle \mapsto \cos(ax + b)|x\rangle|0\rangle + \sin(ax + b)|x\rangle |1\rangle\]Since for small arguments \(\sin(x) \approx x\) this operator can be used to approximate linear functions.
Create a new linear rotation circuit.
- Parameters
num_state_qubits (
Optional
[int
]) – The number of qubits representing the state \(|x\rangle\).slope (
float
) – The slope of the controlled rotation.offset (
float
) – The offset of the controlled rotation.basis (
str
) – The type of Pauli rotation (‘X’, ‘Y’, ‘Z’).name (
str
) – The name of the circuit object.
Attributes
-
ancillas
¶ Returns a list of ancilla bits in the order that the registers were added.
-
basis
¶ The kind of Pauli rotation to be used.
Set the basis to ‘X’, ‘Y’ or ‘Z’ for controlled-X, -Y, or -Z rotations respectively.
- Return type
str
- Returns
The kind of Pauli rotation used in controlled rotation.
-
calibrations
¶ Return calibration dictionary.
- The custom pulse definition of a given gate is of the form
{‘gate_name’: {(qubits, params): schedule}}
-
clbits
¶ Returns a list of classical bits in the order that the registers were added.
-
data
¶
-
extension_lib
= 'include "qelib1.inc";'¶
-
global_phase
¶ Return the global phase of the circuit in radians.
-
header
= 'OPENQASM 2.0;'¶
-
instances
= 16¶
-
metadata
¶ The user provided metadata associated with the circuit
The metadata for the circuit is a user provided
dict
of metadata for the circuit. It will not be used to influence the execution or operation of the circuit, but it is expected to be passed between all transforms of the circuit (ie transpilation) and that providers will associate any circuit metadata with the results it returns from execution of that circuit.
-
num_ancilla_qubits
¶ The minimum number of ancilla qubits in the circuit.
- Return type
int
- Returns
The minimal number of ancillas required.
-
num_ancillas
¶ Return the number of ancilla qubits.
-
num_clbits
¶ Return number of classical bits.
-
num_parameters
¶ - Return type
int
-
num_qubits
¶ Return number of qubits.
-
num_state_qubits
¶ The number of state qubits representing the state \(|x\rangle\).
- Return type
int
- Returns
The number of state qubits.
-
offset
¶ The angle of the single qubit offset rotation on the target qubit.
Before applying the controlled rotations, a single rotation of angle
offset
is applied to the target qubit.- Return type
float
- Returns
The offset angle.
-
parameters
¶ - Return type
ParameterView
-
prefix
= 'circuit'¶
-
qregs
¶ A list of the quantum registers associated with the circuit.
-
qubits
¶ Returns a list of quantum bits in the order that the registers were added.
-
slope
¶ The multiplicative factor in the rotation angle of the controlled rotations.
The rotation angles are
slope * 2^0
,slope * 2^1
, … ,slope * 2^(n-1)
wheren
is the number of state qubits.- Return type
float
- Returns
The rotation angle common in all controlled rotations.