ExcitationPreserving¶
-
class
ExcitationPreserving
(num_qubits=None, mode='iswap', entanglement='full', reps=3, skip_unentangled_qubits=False, skip_final_rotation_layer=False, parameter_prefix='θ', insert_barriers=False, initial_state=None, name='ExcitationPreserving')[source]¶ Bases:
qiskit.circuit.library.n_local.two_local.TwoLocal
The heuristic excitation-preserving wave function ansatz.
The
ExcitationPreserving
circuit preserves the ratio of \(|00\rangle\), \(|01\rangle + |10\rangle\) and \(|11\rangle\) states. The matrix representing the operation is\[ \begin{align}\begin{aligned}\newcommand{\th}{\theta/2}\\\begin{split}\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\th) & -\sin(\th) & 0 \\ 0 & \sin(\th) & \cos(\th) & 0 \\ 0 & 0 & 0 & e^{-i\phi} \end{pmatrix}\end{split}\end{aligned}\end{align} \]for the mode
'fsim'
or with \(e^{-i\phi} = 1\) for the mode'iswap'
.Note that other wave functions, such as UCC-ansatzes, are also excitation preserving. However these can become complex quickly, while this heuristically motivated circuit follows a simpler pattern.
This trial wave function consists of layers of \(Z\) rotations with 2-qubit entanglements. The entangling is creating using \(XX+YY\) rotations and optionally a controlled-phase gate for the mode
'fsim'
.See
RealAmplitudes
for more detail on the possible arguments and options such as skipping unentanglement qubits, which apply here too.The rotations of the ExcitationPreserving ansatz can be written as
Examples
>>> ansatz = ExcitationPreserving(3, reps=1, insert_barriers=True, entanglement='linear') >>> print(ansatz) # show the circuit ┌──────────┐ ░ ┌────────────┐┌────────────┐ ░ ┌──────────┐ q_0: ┤ RZ(θ[0]) ├─░─┤0 ├┤0 ├─────────────────────────────░─┤ RZ(θ[5]) ├ ├──────────┤ ░ │ RXX(θ[3]) ││ RYY(θ[3]) │┌────────────┐┌────────────┐ ░ ├──────────┤ q_1: ┤ RZ(θ[1]) ├─░─┤1 ├┤1 ├┤0 ├┤0 ├─░─┤ RZ(θ[6]) ├ ├──────────┤ ░ └────────────┘└────────────┘│ RXX(θ[4]) ││ RYY(θ[4]) │ ░ ├──────────┤ q_2: ┤ RZ(θ[2]) ├─░─────────────────────────────┤1 ├┤1 ├─░─┤ RZ(θ[7]) ├ └──────────┘ ░ └────────────┘└────────────┘ ░ └──────────┘
>>> ansatz = ExcitationPreserving(2, reps=1) >>> qc = QuantumCircuit(2) # create a circuit and append the RY variational form >>> qc.cry(0.2, 0, 1) # do some previous operation >>> qc.compose(ansatz, inplace=True) # add the swaprz >>> qc.draw() ┌──────────┐┌────────────┐┌────────────┐┌──────────┐ q_0: ─────■─────┤ RZ(θ[0]) ├┤0 ├┤0 ├┤ RZ(θ[3]) ├ ┌────┴────┐├──────────┤│ RXX(θ[2]) ││ RYY(θ[2]) │├──────────┤ q_1: ┤ RY(0.2) ├┤ RZ(θ[1]) ├┤1 ├┤1 ├┤ RZ(θ[4]) ├ └─────────┘└──────────┘└────────────┘└────────────┘└──────────┘
>>> ansatz = ExcitationPreserving(3, reps=1, mode='fsim', entanglement=[[0,2]], ... insert_barriers=True) >>> print(ansatz) ┌──────────┐ ░ ┌────────────┐┌────────────┐ ░ ┌──────────┐ q_0: ┤ RZ(θ[0]) ├─░─┤0 ├┤0 ├─■──────░─┤ RZ(θ[5]) ├ ├──────────┤ ░ │ ││ │ │ ░ ├──────────┤ q_1: ┤ RZ(θ[1]) ├─░─┤ RXX(θ[3]) ├┤ RYY(θ[3]) ├─┼──────░─┤ RZ(θ[6]) ├ ├──────────┤ ░ │ ││ │ │θ[4] ░ ├──────────┤ q_2: ┤ RZ(θ[2]) ├─░─┤1 ├┤1 ├─■──────░─┤ RZ(θ[7]) ├ └──────────┘ ░ └────────────┘└────────────┘ ░ └──────────┘
Create a new ExcitationPreserving 2-local circuit.
- Parameters
num_qubits (
Optional
[int
]) – The number of qubits of the ExcitationPreserving circuit.mode (
str
) – Choose the entangler mode, can be ‘iswap’ or ‘fsim’.reps (
int
) – Specifies how often the structure of a rotation layer followed by an entanglement layer is repeated.entanglement (
Union
[str
,List
[List
[int
]],Callable
[[int
],List
[int
]]]) – Specifies the entanglement structure. Can be a string (‘full’, ‘linear’ or ‘sca’), a list of integer-pairs specifying the indices of qubits entangled with one another, or a callable returning such a list provided with the index of the entanglement layer. See the Examples section ofTwoLocal
for more detail.initial_state (
Optional
[Any
]) – A QuantumCircuit object to prepend to the circuit.skip_unentangled_qubits (
bool
) – If True, the single qubit gates are only applied to qubits that are entangled with another qubit. If False, the single qubit gates are applied to each qubit in the Ansatz. Defaults to False.skip_unentangled_qubits – If True, the single qubit gates are only applied to qubits that are entangled with another qubit. If False, the single qubit gates are applied to each qubit in the Ansatz. Defaults to False.
skip_final_rotation_layer (
bool
) – If True, a rotation layer is added at the end of the ansatz. If False, no rotation layer is added. Defaults to True.parameter_prefix (
str
) – The parameterized gates require a parameter to be defined, for which we useParameterVector
.insert_barriers (
bool
) – If True, barriers are inserted in between each layer. If False, no barriers are inserted.
- Raises
ValueError – If the selected mode is not supported.
Attributes
-
ancillas
¶ Returns a list of ancilla bits in the order that the registers were added.
-
calibrations
¶ Return calibration dictionary.
- The custom pulse definition of a given gate is of the form
{‘gate_name’: {(qubits, params): schedule}}
-
clbits
¶ Returns a list of classical bits in the order that the registers were added.
-
data
¶
-
entanglement
¶ Get the entanglement strategy.
- Return type
Union
[str
,List
[str
],List
[List
[str
]],List
[int
],List
[List
[int
]],List
[List
[List
[int
]]],List
[List
[List
[List
[int
]]]],Callable
[[int
],str
],Callable
[[int
],List
[List
[int
]]]]- Returns
The entanglement strategy, see
get_entangler_map()
for more detail on how the format is interpreted.
-
entanglement_blocks
¶ The blocks in the entanglement layers.
- Return type
List
[Instruction
]- Returns
The blocks in the entanglement layers.
-
extension_lib
= 'include "qelib1.inc";'¶
-
global_phase
¶ Return the global phase of the circuit in radians.
-
header
= 'OPENQASM 2.0;'¶
-
initial_state
¶ Return the initial state that is added in front of the n-local circuit.
- Return type
Any
- Returns
The initial state.
-
insert_barriers
¶ If barriers are inserted in between the layers or not.
- Return type
bool
- Returns
True, if barriers are inserted in between the layers, False if not.
-
instances
= 16¶
-
metadata
¶ The user provided metadata associated with the circuit
The metadata for the circuit is a user provided
dict
of metadata for the circuit. It will not be used to influence the execution or operation of the circuit, but it is expected to be passed between all transforms of the circuit (ie transpilation) and that providers will associate any circuit metadata with the results it returns from execution of that circuit.
-
num_ancillas
¶ Return the number of ancilla qubits.
-
num_clbits
¶ Return number of classical bits.
-
num_layers
¶ Return the number of layers in the n-local circuit.
- Return type
int
- Returns
The number of layers in the circuit.
-
num_parameters
¶ - Return type
int
-
num_parameters_settable
¶ The number of total parameters that can be set to distinct values.
This does not change when the parameters are bound or exchanged for same parameters, and therefore is different from
num_parameters
which counts the number of uniqueParameter
objects currently in the circuit.- Return type
int
- Returns
The number of parameters originally available in the circuit.
Note
This quantity does not require the circuit to be built yet.
-
num_qubits
¶ Returns the number of qubits in this circuit.
- Return type
int
- Returns
The number of qubits.
-
ordered_parameters
¶ The parameters used in the underlying circuit.
This includes float values and duplicates.
Examples
>>> # prepare circuit ... >>> print(nlocal) ┌───────┐┌──────────┐┌──────────┐┌──────────┐ q_0: ┤ Ry(1) ├┤ Ry(θ[1]) ├┤ Ry(θ[1]) ├┤ Ry(θ[3]) ├ └───────┘└──────────┘└──────────┘└──────────┘ >>> nlocal.parameters {Parameter(θ[1]), Parameter(θ[3])} >>> nlocal.ordered_parameters [1, Parameter(θ[1]), Parameter(θ[1]), Parameter(θ[3])]
- Return type
List
[Parameter
]- Returns
The parameters objects used in the circuit.
-
parameter_bounds
¶ Return the parameter bounds.
- Return type
List
[Tuple
[float
,float
]]- Returns
The parameter bounds.
-
parameters
¶ - Return type
ParameterView
-
preferred_init_points
¶ The initial points for the parameters. Can be stored as initial guess in optimization.
- Return type
Optional
[List
[float
]]- Returns
The initial values for the parameters, or None, if none have been set.
-
prefix
= 'circuit'¶
-
qregs
¶ A list of the quantum registers associated with the circuit.
-
qubits
¶ Returns a list of quantum bits in the order that the registers were added.
-
reps
¶ The number of times rotation and entanglement block are repeated.
- Return type
int
- Returns
The number of repetitions.
-
rotation_blocks
¶ The blocks in the rotation layers.
- Return type
List
[Instruction
]- Returns
The blocks in the rotation layers.