CCXGate¶
-
class
CCXGate
(label=None, ctrl_state=None)[source]¶ Bases:
qiskit.circuit.controlledgate.ControlledGate
CCX gate, also known as Toffoli gate.
Circuit symbol:
q_0: ──■── │ q_1: ──■── ┌─┴─┐ q_2: ┤ X ├ └───┘
Matrix representation:
\[\begin{split}CCX q_0, q_1, q_2 = I \otimes I \otimes |0 \rangle \langle 0| + CX \otimes |1 \rangle \langle 1| = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \end{pmatrix}\end{split}\]Note
In Qiskit’s convention, higher qubit indices are more significant (little endian convention). In many textbooks, controlled gates are presented with the assumption of more significant qubits as control, which in our case would be q_2 and q_1. Thus a textbook matrix for this gate will be:
┌───┐ q_0: ┤ X ├ └─┬─┘ q_1: ──■── │ q_2: ──■──
\[\begin{split}CCX\ q_2, q_1, q_0 = |0 \rangle \langle 0| \otimes I \otimes I + |1 \rangle \langle 1| \otimes CX = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}\end{split}\]Create new CCX gate.
Methods Defined Here
Controlled version of this gate.
Return an inverted CCX gate (also a CCX).
Attributes
-
ctrl_state
¶ Return the control state of the gate as a decimal integer.
- Return type
int
-
decompositions
¶ Get the decompositions of the instruction from the SessionEquivalenceLibrary.
-
definition
¶ Return definition in terms of other basic gates. If the gate has open controls, as determined from self.ctrl_state, the returned definition is conjugated with X without changing the internal _definition.
- Return type
List
-
duration
¶ Get the duration.
-
label
¶ Return instruction label
- Return type
str
-
name
¶ Get name of gate. If the gate has open controls the gate name will become:
<original_name_o<ctrl_state>
where <original_name> is the gate name for the default case of closed control qubits and <ctrl_state> is the integer value of the control state for the gate.
- Return type
str
-
num_ctrl_qubits
¶ Get number of control qubits.
- Returns
The number of control qubits for the gate.
- Return type
int
-
params
¶ Get parameters from base_gate.
- Returns
List of gate parameters.
- Return type
list
- Raises
CircuitError – Controlled gate does not define a base gate
-
unit
¶ Get the time unit of duration.
-