GaussianConditionalIndependenceModel¶
-
class
GaussianConditionalIndependenceModel
(n_normal, normal_max_value, p_zeros, rhos, i_normal=None, i_ps=None)[source]¶ Bases:
qiskit.aqua.components.uncertainty_models.multivariate_distribution.MultivariateDistribution
The Gaussian Conditional Independence Model for Credit Risk.
Reference: https://arxiv.org/abs/1412.1183
Dependency between individual risk variables and latent variable is approximated linearly.
- Parameters
n_normal (
int
) – Number of qubits to represent the latent normal random variable Znormal_max_value (
float
) – Min/max value to truncate the latent normal random variable Zp_zeros (
Union
[List
[float
],ndarray
]) – Standard default probabilities for each assetrhos (
Union
[List
[float
],ndarray
]) – Sensitivities of default probability of assets with respect to latent variable Zi_normal (
Union
[List
[float
],ndarray
,None
]) – Indices of qubits to represent normal variablei_ps (
Union
[List
[float
],ndarray
,None
]) – Indices of qubits to represent asset defaults
Methods
Adds corresponding controlled sub-circuit to given circuit
Adds controlled inverse of corresponding sub-circuit to given circuit
Adds controlled, inverse, power of corresponding circuit.
Adds controlled power of corresponding circuit.
Adds inverse of corresponding sub-circuit to given circuit
Adds inverse power of corresponding circuit.
Adds power of corresponding circuit.
returns number of qubits
returns number of qubits controlled
pdf to probabilities
returns required ancillas
returns required ancillas controlled
Attributes
-
dimension
¶ returns dimensions
-
high
¶ returns high
-
low
¶ returns low
-
num_qubits
¶ returns num qubits
-
num_target_qubits
¶ Returns the number of target qubits
-
num_values
¶ returns number of values
-
probabilities
¶ returns probabilities
-
probabilities_vector
¶ returns probabilities vector
-
values
¶ returns values