AmplitudeEstimation¶
-
class
AmplitudeEstimation
(num_eval_qubits, state_preparation=None, grover_operator=None, objective_qubits=None, post_processing=None, phase_estimation_circuit=None, iqft=None, quantum_instance=None, a_factory=None, q_factory=None, i_objective=None)[source]¶ Bases:
qiskit.aqua.algorithms.amplitude_estimators.ae_algorithm.AmplitudeEstimationAlgorithm
The Quantum Phase Estimation-based Amplitude Estimation algorithm.
This class implements the original Quantum Amplitude Estimation (QAE) algorithm, introduced by [1]. This canonical version uses quantum phase estimation along with a set of \(m\) additional evaluation qubits to find an estimate \(\tilde{a}\), that is restricted to the grid
\[\tilde{a} \in \{\sin^2(\pi y / 2^m) : y = 0, ..., 2^{m-1}\}\]More evaluation qubits produce a finer sampling grid, therefore the accuracy of the algorithm increases with \(m\).
Using a maximum likelihood post processing, this grid constraint can be circumvented. This improved estimator is implemented as well, see [2] Appendix A for more detail.
References
- [1]: Brassard, G., Hoyer, P., Mosca, M., & Tapp, A. (2000).
Quantum Amplitude Amplification and Estimation. arXiv:quant-ph/0005055.
- [2]: Grinko, D., Gacon, J., Zoufal, C., & Woerner, S. (2019).
Iterative Quantum Amplitude Estimation. arXiv:1912.05559.
- Parameters
num_eval_qubits (
int
) – The number of evaluation qubits.state_preparation (
Union
[QuantumCircuit
,CircuitFactory
,None
]) – A circuit preparing the input state, referred to as \(\mathcal{A}\).grover_operator (
Union
[QuantumCircuit
,CircuitFactory
,None
]) – The Grover operator \(\mathcal{Q}\) used as unitary in the phase estimation circuit.objective_qubits (
Optional
[List
[int
]]) – A list of qubit indices to specify the oracle in the Grover operator, if the Grover operator is not supplied. A measurement outcome is classified as ‘good’ state if all objective qubits are in state \(|1\rangle\), otherwise it is classified as ‘bad’.post_processing (
Optional
[Callable
[[float
],float
]]) – A mapping applied to the result of the algorithm \(0 \leq a \leq 1\), usually used to map the estimate to a target interval.phase_estimation_circuit (
Optional
[QuantumCircuit
]) – The phase estimation circuit used to run the algorithm. Defaults to the standard phase estimation circuit from the circuit library, qiskit.circuit.library.PhaseEstimation.iqft (
Optional
[QuantumCircuit
]) – The inverse quantum Fourier transform component, defaults to using a standard implementation from qiskit.circuit.library.QFT when None.quantum_instance (
Union
[QuantumInstance
,Backend
,BaseBackend
,None
]) – The backend (or QuantumInstance) to execute the circuits on.a_factory (
Optional
[CircuitFactory
]) – Deprecated, usestate_preparation
. The CircuitFactory subclass object representing the problem unitary.q_factory (
Optional
[CircuitFactory
]) – Deprecated, usegrover_operator
. The CircuitFactory subclass object representing an amplitude estimation sample (based on a_factory).i_objective (
Optional
[int
]) – Deprecated, useobjective_qubits
. The index of the objective qubit, i.e. the qubit marking ‘good’ solutions with the state \(|1\rangle\) and ‘bad’ solutions with the state \(0\rangle\).
Methods
Compute the (1 - alpha) confidence interval.
Construct the Amplitude Estimation quantum circuit.
Determine whether a given state is a good state.
Post processing of the raw amplitude estimation output \(0 \leq a \leq 1\).
Execute the algorithm with selected backend.
Sets backend with configuration.
Attributes
-
a_factory
¶ Get the A operator encoding the amplitude a that’s approximated, i.e.
A |0>_n |0> = sqrt{1 - a} |psi_0>_n |0> + sqrt{a} |psi_1>_n |1>
see the original Brassard paper (https://arxiv.org/abs/quant-ph/0005055) for more detail.
- Returns
the A operator as CircuitFactory
- Return type
-
backend
¶ Returns backend.
- Return type
Union
[Backend
,BaseBackend
]
-
grover_operator
¶ Get the \(\mathcal{Q}\) operator, or Grover operator.
If the Grover operator is not set, we try to build it from the \(\mathcal{A}\) operator and objective_qubits. This only works if objective_qubits is a list of integers.
- Return type
Optional
[QuantumCircuit
]- Returns
The Grover operator, or None if neither the Grover operator nor the \(\mathcal{A}\) operator is set.
-
i_objective
¶ Get the index of the objective qubit. The objective qubit marks the |psi_0> state (called ‘bad states’ in https://arxiv.org/abs/quant-ph/0005055) with |0> and |psi_1> (‘good’ states) with |1>. If the A operator performs the mapping
A |0>_n |0> = sqrt{1 - a} |psi_0>_n |0> + sqrt{a} |psi_1>_n |1>
then, the objective qubit is the last one (which is either |0> or |1>).
If the objective qubit (i_objective) is not set, we check if the Q operator (q_factory) is set and return the index specified there. If the q_factory is not defined, the index equals the number of qubits of the A operator (a_factory) minus one. If also the a_factory is not set, return None.
- Returns
the index of the objective qubit
- Return type
int
-
objective_qubits
¶ Get the criterion for a measurement outcome to be in a ‘good’ state.
- Return type
Optional
[List
[int
]]- Returns
The criterion as list of qubit indices.
-
q_factory
¶ Get the Q operator, or Grover-operator for the Amplitude Estimation algorithm, i.e.
\[\mathcal{Q} = \mathcal{A} \mathcal{S}_0 \mathcal{A}^\dagger \mathcal{S}_f,\]where \(\mathcal{S}_0\) reflects about the |0>_n state and S_psi0 reflects about \(|\Psi_0\rangle_n\). See https://arxiv.org/abs/quant-ph/0005055 for more detail.
If the Q operator is not set, we try to build it from the A operator. If neither the A operator is set, None is returned.
- Returns
returns the current Q factory of the algorithm
- Return type
QFactory
-
quantum_instance
¶ Returns quantum instance.
- Return type
Optional
[QuantumInstance
]
-
random
¶ Return a numpy random.
-
state_preparation
¶ Get the \(\mathcal{A}\) operator encoding the amplitude \(a\).
- Return type
QuantumCircuit
- Returns
The \(\mathcal{A}\) operator as QuantumCircuit.