TNC¶
-
class
TNC
(maxiter=100, disp=False, accuracy=0, ftol=- 1, xtol=- 1, gtol=- 1, tol=None, eps=1e-08, options=None, max_evals_grouped=1, **kwargs)[source]¶ Bases:
qiskit.algorithms.optimizers.scipy_optimizer.SciPyOptimizer
Truncated Newton (TNC) optimizer.
TNC uses a truncated Newton algorithm to minimize a function with variables subject to bounds. This algorithm uses gradient information; it is also called Newton Conjugate-Gradient. It differs from the
CG
method as it wraps a C implementation and allows each variable to be given upper and lower bounds.Uses scipy.optimize.minimize TNC For further detail, please refer to See https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
- Parameters
maxiter (
int
) – Maximum number of function evaluation.disp (
bool
) – Set to True to print convergence messages.accuracy (
float
) – Relative precision for finite difference calculations. If <= machine_precision, set to sqrt(machine_precision). Defaults to 0.ftol (
float
) – Precision goal for the value of f in the stopping criterion. If ftol < 0.0, ftol is set to 0.0 defaults to -1.xtol (
float
) – Precision goal for the value of x in the stopping criterion (after applying x scaling factors). If xtol < 0.0, xtol is set to sqrt(machine_precision). Defaults to -1.gtol (
float
) – Precision goal for the value of the projected gradient in the stopping criterion (after applying x scaling factors). If gtol < 0.0, gtol is set to 1e-2 * sqrt(accuracy). Setting it to 0.0 is not recommended. Defaults to -1.tol (
Optional
[float
]) – Tolerance for termination.eps (
float
) – Step size used for numerical approximation of the Jacobian.options (
Optional
[dict
]) – A dictionary of solver options.max_evals_grouped (
int
) – Max number of default gradient evaluations performed simultaneously.kwargs – additional kwargs for scipy.optimize.minimize.
Methods
Return support level dictionary
We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.
Perform optimization.
Print algorithm-specific options.
Set max evals grouped
Sets or updates values in the options dictionary.
Wrap the function to implicitly inject the args at the call of the function.
Attributes
-
bounds_support_level
¶ Returns bounds support level
-
gradient_support_level
¶ Returns gradient support level
-
initial_point_support_level
¶ Returns initial point support level
-
is_bounds_ignored
¶ Returns is bounds ignored
-
is_bounds_required
¶ Returns is bounds required
-
is_bounds_supported
¶ Returns is bounds supported
-
is_gradient_ignored
¶ Returns is gradient ignored
-
is_gradient_required
¶ Returns is gradient required
-
is_gradient_supported
¶ Returns is gradient supported
-
is_initial_point_ignored
¶ Returns is initial point ignored
-
is_initial_point_required
¶ Returns is initial point required
-
is_initial_point_supported
¶ Returns is initial point supported
-
setting
¶ Return setting
-
settings
¶ - Return type
Dict
[str
,Any
]