SciPyOptimizer¶
-
class
SciPyOptimizer
(method, options=None, max_evals_grouped=1, **kwargs)[source]¶ Bases:
qiskit.algorithms.optimizers.optimizer.Optimizer
A general Qiskit Optimizer wrapping scipy.optimize.minimize.
For further detail, please refer to https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
- Parameters
method (
Union
[str
,Callable
]) – Type of solver.options (
Optional
[Dict
[str
,Any
]]) – A dictionary of solver options.kwargs – additional kwargs for scipy.optimize.minimize.
max_evals_grouped (
int
) – Max number of default gradient evaluations performed simultaneously.
Methods
Return support level dictionary
We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.
Perform optimization.
Print algorithm-specific options.
Set max evals grouped
Sets or updates values in the options dictionary.
Wrap the function to implicitly inject the args at the call of the function.
Attributes
-
bounds_support_level
¶ Returns bounds support level
-
gradient_support_level
¶ Returns gradient support level
-
initial_point_support_level
¶ Returns initial point support level
-
is_bounds_ignored
¶ Returns is bounds ignored
-
is_bounds_required
¶ Returns is bounds required
-
is_bounds_supported
¶ Returns is bounds supported
-
is_gradient_ignored
¶ Returns is gradient ignored
-
is_gradient_required
¶ Returns is gradient required
-
is_gradient_supported
¶ Returns is gradient supported
-
is_initial_point_ignored
¶ Returns is initial point ignored
-
is_initial_point_required
¶ Returns is initial point required
-
is_initial_point_supported
¶ Returns is initial point supported
-
setting
¶ Return setting
-
settings
¶ - Return type
Dict
[str
,Any
]