NFT¶
-
class
NFT
(maxiter=None, maxfev=1024, disp=False, reset_interval=32, options=None, **kwargs)[source]¶ Bases:
qiskit.algorithms.optimizers.scipy_optimizer.SciPyOptimizer
Nakanishi-Fujii-Todo algorithm.
See https://arxiv.org/abs/1903.12166
Built out using scipy framework, for details, please refer to https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html.
- Parameters
maxiter (
Optional
[int
]) – Maximum number of iterations to perform.maxfev (
int
) – Maximum number of function evaluations to perform.disp (
bool
) – dispreset_interval (
int
) – The minimum estimates directly once inreset_interval
times.options (
Optional
[dict
]) – A dictionary of solver options.kwargs – additional kwargs for scipy.optimize.minimize.
Notes
In this optimization method, the optimization function have to satisfy three conditions written in 1.
References
- 1
K. M. Nakanishi, K. Fujii, and S. Todo. 2019. Sequential minimal optimization for quantum-classical hybrid algorithms. arXiv preprint arXiv:1903.12166.
Methods
Return support level dictionary
We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.
Perform optimization.
Print algorithm-specific options.
Set max evals grouped
Sets or updates values in the options dictionary.
Wrap the function to implicitly inject the args at the call of the function.
Attributes
-
bounds_support_level
¶ Returns bounds support level
-
gradient_support_level
¶ Returns gradient support level
-
initial_point_support_level
¶ Returns initial point support level
-
is_bounds_ignored
¶ Returns is bounds ignored
-
is_bounds_required
¶ Returns is bounds required
-
is_bounds_supported
¶ Returns is bounds supported
-
is_gradient_ignored
¶ Returns is gradient ignored
-
is_gradient_required
¶ Returns is gradient required
-
is_gradient_supported
¶ Returns is gradient supported
-
is_initial_point_ignored
¶ Returns is initial point ignored
-
is_initial_point_required
¶ Returns is initial point required
-
is_initial_point_supported
¶ Returns is initial point supported
-
setting
¶ Return setting
-
settings
¶ - Return type
Dict
[str
,Any
]