Source code for qiskit.utils.quantum_instance
# This code is part of Qiskit.
#
# (C) Copyright IBM 2018, 2021.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
""" Quantum Instance module """
from typing import Optional, List, Union, Dict, Callable, Tuple
from enum import Enum
import copy
import logging
import time
import numpy as np
from qiskit.qobj import Qobj
from qiskit.utils import circuit_utils
from qiskit.exceptions import QiskitError, MissingOptionalLibraryError
from .backend_utils import (
is_ibmq_provider,
is_statevector_backend,
is_simulator_backend,
is_local_backend,
is_aer_qasm,
is_basicaer_provider,
support_backend_options,
)
logger = logging.getLogger(__name__)
class _MeasFitterType(Enum):
"""Meas Fitter Type."""
COMPLETE_MEAS_FITTER = 0
TENSORED_MEAS_FITTER = 1
@staticmethod
def type_from_class(meas_class):
"""
Returns fitter type from class
"""
try:
from qiskit.ignis.mitigation.measurement import (
CompleteMeasFitter,
TensoredMeasFitter,
)
except ImportError as ex:
raise MissingOptionalLibraryError(
libname="qiskit-ignis",
name="QuantumInstance",
pip_install="pip install qiskit-ignis",
) from ex
if meas_class == CompleteMeasFitter:
return _MeasFitterType.COMPLETE_MEAS_FITTER
elif meas_class == TensoredMeasFitter:
return _MeasFitterType.TENSORED_MEAS_FITTER
else:
raise QiskitError(f"Unknown fitter {meas_class}")
@staticmethod
def type_from_instance(meas_instance):
"""
Returns fitter type from instance
"""
try:
from qiskit.ignis.mitigation.measurement import (
CompleteMeasFitter,
TensoredMeasFitter,
)
except ImportError as ex:
raise MissingOptionalLibraryError(
libname="qiskit-ignis",
name="QuantumInstance",
pip_install="pip install qiskit-ignis",
) from ex
if isinstance(meas_instance, CompleteMeasFitter):
return _MeasFitterType.COMPLETE_MEAS_FITTER
elif isinstance(meas_instance, TensoredMeasFitter):
return _MeasFitterType.TENSORED_MEAS_FITTER
else:
raise QiskitError(f"Unknown fitter {meas_instance}")
[docs]class QuantumInstance:
"""Quantum Backend including execution setting."""
_BACKEND_CONFIG = ["basis_gates", "coupling_map"]
_COMPILE_CONFIG = ["initial_layout", "seed_transpiler", "optimization_level"]
_RUN_CONFIG = ["shots", "max_credits", "memory", "seed_simulator"]
_QJOB_CONFIG = ["timeout", "wait"]
_NOISE_CONFIG = ["noise_model"]
# https://github.com/Qiskit/qiskit-aer/blob/master/qiskit/providers/aer/backends/qasm_simulator.py
_BACKEND_OPTIONS_QASM_ONLY = ["statevector_sample_measure_opt", "max_parallel_shots"]
_BACKEND_OPTIONS = [
"initial_statevector",
"chop_threshold",
"max_parallel_threads",
"max_parallel_experiments",
"statevector_parallel_threshold",
"statevector_hpc_gate_opt",
] + _BACKEND_OPTIONS_QASM_ONLY
def __init__(
self,
backend,
# run config
shots: Optional[int] = None,
seed_simulator: Optional[int] = None,
max_credits: int = 10,
# backend properties
basis_gates: Optional[List[str]] = None,
coupling_map=None,
# transpile
initial_layout=None,
pass_manager=None,
seed_transpiler: Optional[int] = None,
optimization_level: Optional[int] = None,
# simulation
backend_options: Optional[Dict] = None,
noise_model=None,
# job
timeout: Optional[float] = None,
wait: float = 5.0,
# others
skip_qobj_validation: bool = True,
measurement_error_mitigation_cls: Optional[Callable] = None,
cals_matrix_refresh_period: int = 30,
measurement_error_mitigation_shots: Optional[int] = None,
job_callback: Optional[Callable] = None,
mit_pattern: Optional[List[List[int]]] = None,
) -> None:
"""
Quantum Instance holds a Qiskit Terra backend as well as configuration for circuit
transpilation and execution. When provided to an Aqua algorithm the algorithm will
execute the circuits it needs to run using the instance.
Args:
backend (Union['Backend', 'BaseBackend']): Instance of selected backend
shots: Number of repetitions of each circuit, for sampling. If None, the shots are
extracted from the backend. If the backend has none set, the default is 1024.
seed_simulator: Random seed for simulators
max_credits: Maximum credits to use
basis_gates: List of basis gate names supported by the
target. Defaults to basis gates of the backend.
coupling_map (Optional[Union['CouplingMap', List[List]]]):
Coupling map (perhaps custom) to target in mapping
initial_layout (Optional[Union['Layout', Dict, List]]):
Initial layout of qubits in mapping
pass_manager (Optional['PassManager']):
Pass manager to handle how to compile the circuits
seed_transpiler: The random seed for circuit mapper
optimization_level: How much optimization to perform on the circuits.
Higher levels generate more optimized circuits, at the expense of longer
transpilation time.
backend_options: All running options for backend, please refer
to the provider of the backend for information as to what options it supports.
noise_model (Optional['NoiseModel']): noise model for simulator
timeout: Seconds to wait for job. If None, wait indefinitely.
wait: Seconds between queries for job result
skip_qobj_validation: Bypass Qobj validation to decrease circuit
processing time during submission to backend.
measurement_error_mitigation_cls: The approach to mitigate
measurement errors. Qiskit Ignis provides fitter classes for this functionality
and CompleteMeasFitter or TensoredMeasFitter
from qiskit.ignis.mitigation.measurement module can be used here.
TensoredMeasFitter doesn't support subset fitter.
cals_matrix_refresh_period: How often to refresh the calibration
matrix in measurement mitigation. in minutes
measurement_error_mitigation_shots: The number of shots number for
building calibration matrix. If None, the main `shots` parameter value is used.
job_callback: Optional user supplied callback which can be used
to monitor job progress as jobs are submitted for processing by an Aqua algorithm.
The callback is provided the following arguments: `job_id, job_status,
queue_position, job`
mit_pattern: Qubits on which to perform the TensoredMeasFitter
measurement correction, divided to groups according to tensors.
If `None` and `qr` is given then assumed to be performed over the entire
`qr` as one group (default `None`).
Raises:
QiskitError: the shots exceeds the maximum number of shots
QiskitError: set noise model but the backend does not support that
QiskitError: set backend_options but the backend does not support that
"""
self._backend = backend
self._pass_manager = pass_manager
# if the shots are none, try to get them from the backend
if shots is None:
from qiskit.providers.basebackend import BaseBackend # pylint: disable=cyclic-import
from qiskit.providers.backend import BackendV1 # pylint: disable=cyclic-import
if isinstance(backend, (BaseBackend, BackendV1)):
if hasattr(backend, "options"): # should always be true for V1
backend_shots = backend.options.get("shots", 1024)
if shots != backend_shots:
logger.info(
"Overwriting the number of shots in the quantum instance with "
"the settings from the backend."
)
shots = backend_shots
# safeguard if shots are still not set
if shots is None:
shots = 1024
# pylint: disable=cyclic-import
from qiskit.assembler.run_config import RunConfig
run_config = RunConfig(shots=shots, max_credits=max_credits)
if seed_simulator is not None:
run_config.seed_simulator = seed_simulator
self._run_config = run_config
# setup backend config
basis_gates = basis_gates or backend.configuration().basis_gates
coupling_map = coupling_map or getattr(backend.configuration(), "coupling_map", None)
self._backend_config = {"basis_gates": basis_gates, "coupling_map": coupling_map}
# setup compile config
self._compile_config = {
"initial_layout": initial_layout,
"seed_transpiler": seed_transpiler,
"optimization_level": optimization_level,
}
# setup job config
self._qjob_config = (
{"timeout": timeout} if self.is_local else {"timeout": timeout, "wait": wait}
)
# setup noise config
self._noise_config = {}
if noise_model is not None:
if is_simulator_backend(self._backend) and not is_basicaer_provider(self._backend):
self._noise_config = {"noise_model": noise_model}
else:
raise QiskitError(
"The noise model is not supported "
"on the selected backend {} ({}) "
"only certain backends, such as Aer qasm simulator "
"support noise.".format(self.backend_name, self._backend.provider())
)
# setup backend options for run
self._backend_options = {}
if backend_options is not None:
if support_backend_options(self._backend):
self._backend_options = {"backend_options": backend_options}
else:
raise QiskitError(
"backend_options can not used with the backends in " "IBMQ provider."
)
# setup measurement error mitigation
self._meas_error_mitigation_cls = None
if self.is_statevector:
if measurement_error_mitigation_cls is not None:
raise QiskitError(
"Measurement error mitigation does not work " "with the statevector simulation."
)
else:
self._meas_error_mitigation_cls = measurement_error_mitigation_cls
self._meas_error_mitigation_fitters: Dict[str, Tuple[np.ndarray, float]] = {}
# TODO: support different fitting method in error mitigation?
self._meas_error_mitigation_method = "least_squares"
self._cals_matrix_refresh_period = cals_matrix_refresh_period
self._meas_error_mitigation_shots = measurement_error_mitigation_shots
self._mit_pattern = mit_pattern
if self._meas_error_mitigation_cls is not None:
logger.info(
"The measurement error mitigation is enabled. "
"It will automatically submit an additional job to help "
"calibrate the result of other jobs. "
"The current approach will submit a job with 2^N circuits "
"to build the calibration matrix, "
"where N is the number of measured qubits. "
"Furthermore, Aqua will re-use the calibration matrix for %s minutes "
"and re-build it after that.",
self._cals_matrix_refresh_period,
)
# setup others
if is_ibmq_provider(self._backend):
if skip_qobj_validation:
logger.info(
"skip_qobj_validation was set True but this setting is not "
"supported by IBMQ provider and has been ignored."
)
skip_qobj_validation = False
self._skip_qobj_validation = skip_qobj_validation
self._circuit_summary = False
self._job_callback = job_callback
self._time_taken = 0.0
logger.info(self)
def __str__(self) -> str:
"""Overload string.
Returns:
str: the info of the object.
"""
from qiskit import __version__ as terra_version
info = f"\nQiskit Terra version: {terra_version}\n"
info += "Backend: '{} ({})', with following setting:\n{}\n{}\n{}\n{}\n{}\n{}".format(
self.backend_name,
self._backend.provider(),
self._backend_config,
self._compile_config,
self._run_config,
self._qjob_config,
self._backend_options,
self._noise_config,
)
info += f"\nMeasurement mitigation: {self._meas_error_mitigation_cls}"
return info
[docs] def transpile(self, circuits):
"""
A wrapper to transpile circuits to allow algorithm access the transpiled circuits.
Args:
circuits (Union['QuantumCircuit', List['QuantumCircuit']]): circuits to transpile
Returns:
List['QuantumCircuit']: The transpiled circuits, it is always a list even though
the length is one.
"""
# pylint: disable=cyclic-import
from qiskit import compiler
if self._pass_manager is not None:
transpiled_circuits = self._pass_manager.run(circuits)
else:
transpiled_circuits = compiler.transpile(
circuits, self._backend, **self._backend_config, **self._compile_config
)
if not isinstance(transpiled_circuits, list):
transpiled_circuits = [transpiled_circuits]
if logger.isEnabledFor(logging.DEBUG) and self._circuit_summary:
logger.debug("==== Before transpiler ====")
logger.debug(circuit_utils.summarize_circuits(circuits))
if transpiled_circuits is not None:
logger.debug("==== After transpiler ====")
logger.debug(circuit_utils.summarize_circuits(transpiled_circuits))
return transpiled_circuits
[docs] def assemble(self, circuits) -> Qobj:
"""assemble circuits"""
# pylint: disable=cyclic-import
from qiskit import compiler
return compiler.assemble(circuits, **self._run_config.to_dict())
[docs] def execute(self, circuits, had_transpiled: bool = False):
"""
A wrapper to interface with quantum backend.
Args:
circuits (Union['QuantumCircuit', List['QuantumCircuit']]):
circuits to execute
had_transpiled: whether or not circuits had been transpiled
Raises:
QiskitError: Invalid error mitigation fitter class
QiskitError: TensoredMeasFitter class doesn't support subset fitter
MissingOptionalLibraryError: Ignis not installed
Returns:
Result: result object
TODO: Maybe we can combine the circuits for the main ones and calibration circuits before
assembling to the qobj.
"""
from qiskit.utils.run_circuits import run_qobj, run_circuits
from qiskit.utils.measurement_error_mitigation import (
get_measured_qubits_from_qobj,
get_measured_qubits,
build_measurement_error_mitigation_circuits,
build_measurement_error_mitigation_qobj,
)
# maybe compile
if not had_transpiled:
circuits = self.transpile(circuits)
from qiskit.providers import BackendV1
circuit_job = isinstance(self._backend, BackendV1)
if self.is_statevector and self._backend.name() == "aer_simulator_statevector":
try:
from qiskit.providers.aer.library import SaveStatevector
def _find_save_state(data):
for instr, _, _ in reversed(data):
if isinstance(instr, SaveStatevector):
return True
return False
if isinstance(circuits, list):
for circuit in circuits:
if not _find_save_state(circuit.data):
circuit.save_statevector()
else:
if not _find_save_state(circuits.data):
circuits.save_statevector()
except ImportError:
pass
# assemble
if not circuit_job:
qobj = self.assemble(circuits)
if self._meas_error_mitigation_cls is not None:
qubit_index, qubit_mappings = (
get_measured_qubits(circuits)
if circuit_job
else get_measured_qubits_from_qobj(qobj)
)
mit_pattern = self._mit_pattern
if mit_pattern is None:
mit_pattern = [[i] for i in range(len(qubit_index))]
qubit_index_str = "_".join([str(x) for x in qubit_index]) + "_{}".format(
self._meas_error_mitigation_shots or self._run_config.shots
)
meas_error_mitigation_fitter, timestamp = self._meas_error_mitigation_fitters.get(
qubit_index_str, (None, 0.0)
)
if meas_error_mitigation_fitter is None:
# check the asked qubit_index are the subset of build matrices
for key, _ in self._meas_error_mitigation_fitters.items():
stored_qubit_index = [int(x) for x in key.split("_")[:-1]]
stored_shots = int(key.split("_")[-1])
if len(qubit_index) < len(stored_qubit_index):
tmp = list(set(qubit_index + stored_qubit_index))
if (
sorted(tmp) == sorted(stored_qubit_index)
and self._run_config.shots == stored_shots
):
# the qubit used in current job is the subset and shots are the same
(
meas_error_mitigation_fitter,
timestamp,
) = self._meas_error_mitigation_fitters.get(key, (None, 0.0))
meas_error_mitigation_fitter = (
meas_error_mitigation_fitter.subset_fitter(
qubit_sublist=qubit_index
)
)
logger.info(
"The qubits used in the current job is the subset of "
"previous jobs, "
"reusing the calibration matrix if it is not out-of-date."
)
build_cals_matrix = (
self.maybe_refresh_cals_matrix(timestamp) or meas_error_mitigation_fitter is None
)
if build_cals_matrix:
if circuit_job:
logger.info("Updating to also run measurement error mitigation.")
use_different_shots = not (
self._meas_error_mitigation_shots is None
or self._meas_error_mitigation_shots == self._run_config.shots
)
temp_run_config = copy.deepcopy(self._run_config)
if use_different_shots:
temp_run_config.shots = self._meas_error_mitigation_shots
(
cal_circuits,
state_labels,
circuit_labels,
) = build_measurement_error_mitigation_circuits(
qubit_index,
self._meas_error_mitigation_cls,
self._backend,
self._backend_config,
self._compile_config,
mit_pattern=mit_pattern,
)
if use_different_shots:
cals_result = run_circuits(
cal_circuits,
self._backend,
qjob_config=self._qjob_config,
backend_options=self._backend_options,
noise_config=self._noise_config,
run_config=self._run_config.to_dict(),
job_callback=self._job_callback,
)
self._time_taken += cals_result.time_taken
result = run_circuits(
circuits,
self._backend,
qjob_config=self.qjob_config,
backend_options=self.backend_options,
noise_config=self._noise_config,
run_config=self.run_config.to_dict(),
job_callback=self._job_callback,
)
self._time_taken += result.time_taken
else:
circuits[0:0] = cal_circuits
result = run_circuits(
circuits,
self._backend,
qjob_config=self.qjob_config,
backend_options=self.backend_options,
noise_config=self._noise_config,
run_config=self.run_config.to_dict(),
job_callback=self._job_callback,
)
self._time_taken += result.time_taken
cals_result = result
else:
logger.info("Updating qobj with the circuits for measurement error mitigation.")
use_different_shots = not (
self._meas_error_mitigation_shots is None
or self._meas_error_mitigation_shots == self._run_config.shots
)
temp_run_config = copy.deepcopy(self._run_config)
if use_different_shots:
temp_run_config.shots = self._meas_error_mitigation_shots
(
cals_qobj,
state_labels,
circuit_labels,
) = build_measurement_error_mitigation_qobj(
qubit_index,
self._meas_error_mitigation_cls,
self._backend,
self._backend_config,
self._compile_config,
temp_run_config,
mit_pattern=mit_pattern,
)
if use_different_shots or is_aer_qasm(self._backend):
cals_result = run_qobj(
cals_qobj,
self._backend,
self._qjob_config,
self._backend_options,
self._noise_config,
self._skip_qobj_validation,
self._job_callback,
)
self._time_taken += cals_result.time_taken
result = run_qobj(
qobj,
self._backend,
self._qjob_config,
self._backend_options,
self._noise_config,
self._skip_qobj_validation,
self._job_callback,
)
self._time_taken += result.time_taken
else:
# insert the calibration circuit into main qobj if the shots are the same
qobj.experiments[0:0] = cals_qobj.experiments
result = run_qobj(
qobj,
self._backend,
self._qjob_config,
self._backend_options,
self._noise_config,
self._skip_qobj_validation,
self._job_callback,
)
self._time_taken += result.time_taken
cals_result = result
logger.info("Building calibration matrix for measurement error mitigation.")
meas_type = _MeasFitterType.type_from_class(self._meas_error_mitigation_cls)
if meas_type == _MeasFitterType.COMPLETE_MEAS_FITTER:
meas_error_mitigation_fitter = self._meas_error_mitigation_cls(
cals_result, state_labels, qubit_list=qubit_index, circlabel=circuit_labels
)
elif meas_type == _MeasFitterType.TENSORED_MEAS_FITTER:
meas_error_mitigation_fitter = self._meas_error_mitigation_cls(
cals_result, mit_pattern=state_labels, circlabel=circuit_labels
)
self._meas_error_mitigation_fitters[qubit_index_str] = (
meas_error_mitigation_fitter,
time.time(),
)
else:
result = (
run_circuits(
circuits,
self._backend,
qjob_config=self.qjob_config,
backend_options=self.backend_options,
noise_config=self._noise_config,
run_config=self._run_config.to_dict(),
job_callback=self._job_callback,
)
if circuit_job
else run_qobj(
qobj,
self._backend,
self._qjob_config,
self._backend_options,
self._noise_config,
self._skip_qobj_validation,
self._job_callback,
)
)
self._time_taken += result.time_taken
if meas_error_mitigation_fitter is not None:
logger.info("Performing measurement error mitigation.")
if (
hasattr(self._run_config, "parameterizations")
and len(self._run_config.parameterizations) > 0
and len(self._run_config.parameterizations[0]) > 0
and len(self._run_config.parameterizations[0][0]) > 0
):
num_circuit_templates = len(self._run_config.parameterizations)
num_param_variations = len(self._run_config.parameterizations[0][0])
num_circuits = num_circuit_templates * num_param_variations
else:
num_circuits = len(circuits)
skip_num_circuits = len(result.results) - num_circuits
# remove the calibration counts from result object to assure the length of
# ExperimentalResult is equal length to input circuits
result.results = result.results[skip_num_circuits:]
tmp_result = copy.deepcopy(result)
for qubit_index_str, c_idx in qubit_mappings.items():
curr_qubit_index = [int(x) for x in qubit_index_str.split("_")]
tmp_result.results = [result.results[i] for i in c_idx]
if curr_qubit_index == qubit_index:
tmp_fitter = meas_error_mitigation_fitter
elif _MeasFitterType.COMPLETE_MEAS_FITTER == _MeasFitterType.type_from_instance(
meas_error_mitigation_fitter
):
tmp_fitter = meas_error_mitigation_fitter.subset_fitter(curr_qubit_index)
else:
raise QiskitError(
"{} doesn't support subset_fitter.".format(
meas_error_mitigation_fitter.__class__.__name__
)
)
tmp_result = tmp_fitter.filter.apply(
tmp_result, self._meas_error_mitigation_method
)
for i, n in enumerate(c_idx):
result.results[n] = tmp_result.results[i]
else:
result = (
run_circuits(
circuits,
self._backend,
qjob_config=self.qjob_config,
backend_options=self.backend_options,
noise_config=self._noise_config,
run_config=self._run_config.to_dict(),
job_callback=self._job_callback,
)
if circuit_job
else run_qobj(
qobj,
self._backend,
self._qjob_config,
self._backend_options,
self._noise_config,
self._skip_qobj_validation,
self._job_callback,
)
)
self._time_taken += result.time_taken
if self._circuit_summary:
self._circuit_summary = False
return result
[docs] def set_config(self, **kwargs):
"""Set configurations for the quantum instance."""
for k, v in kwargs.items():
if k in QuantumInstance._RUN_CONFIG:
setattr(self._run_config, k, v)
elif k in QuantumInstance._QJOB_CONFIG:
self._qjob_config[k] = v
elif k in QuantumInstance._COMPILE_CONFIG:
self._compile_config[k] = v
elif k in QuantumInstance._BACKEND_CONFIG:
self._backend_config[k] = v
elif k in QuantumInstance._BACKEND_OPTIONS:
if not support_backend_options(self._backend):
raise QiskitError(
"backend_options can not be used with this backend "
"{} ({}).".format(self.backend_name, self._backend.provider())
)
if k in QuantumInstance._BACKEND_OPTIONS_QASM_ONLY and self.is_statevector:
raise QiskitError(
"'{}' is only applicable for qasm simulator but "
"statevector simulator is used as the backend."
)
if "backend_options" not in self._backend_options:
self._backend_options["backend_options"] = {}
self._backend_options["backend_options"][k] = v
elif k in QuantumInstance._NOISE_CONFIG:
if not is_simulator_backend(self._backend) or is_basicaer_provider(self._backend):
raise QiskitError(
"The noise model is not supported on the selected backend {} ({}) "
"only certain backends, such as Aer qasm support "
"noise.".format(self.backend_name, self._backend.provider())
)
self._noise_config[k] = v
else:
raise ValueError(f"unknown setting for the key ({k}).")
@property
def time_taken(self) -> float:
"""Accumulated time taken for execution."""
return self._time_taken
[docs] def reset_execution_results(self) -> None:
"""Reset execution results"""
self._time_taken = 0.0
@property
def qjob_config(self):
"""Getter of qjob_config."""
return self._qjob_config
@property
def backend_config(self):
"""Getter of backend_config."""
return self._backend_config
@property
def compile_config(self):
"""Getter of compile_config."""
return self._compile_config
@property
def run_config(self):
"""Getter of run_config."""
return self._run_config
@property
def noise_config(self):
"""Getter of noise_config."""
return self._noise_config
@property
def backend_options(self):
"""Getter of backend_options."""
return self._backend_options
@property
def circuit_summary(self):
"""Getter of circuit summary."""
return self._circuit_summary
@circuit_summary.setter
def circuit_summary(self, new_value):
"""sets circuit summary"""
self._circuit_summary = new_value
@property
def measurement_error_mitigation_cls(self): # pylint: disable=invalid-name
"""returns measurement error mitigation cls"""
return self._meas_error_mitigation_cls
@measurement_error_mitigation_cls.setter
def measurement_error_mitigation_cls(self, new_value): # pylint: disable=invalid-name
"""sets measurement error mitigation cls"""
self._meas_error_mitigation_cls = new_value
@property
def cals_matrix_refresh_period(self):
"""returns matrix refresh period"""
return self._cals_matrix_refresh_period
@cals_matrix_refresh_period.setter
def cals_matrix_refresh_period(self, new_value):
"""sets matrix refresh period"""
self._cals_matrix_refresh_period = new_value
@property
def measurement_error_mitigation_shots(self): # pylint: disable=invalid-name
"""returns measurement error mitigation shots"""
return self._meas_error_mitigation_shots
@measurement_error_mitigation_shots.setter
def measurement_error_mitigation_shots(self, new_value): # pylint: disable=invalid-name
"""sets measurement error mitigation shots"""
self._meas_error_mitigation_shots = new_value
@property
def backend(self):
"""Return BaseBackend backend object."""
return self._backend
@property
def backend_name(self):
"""Return backend name."""
return self._backend.name()
@property
def is_statevector(self):
"""Return True if backend is a statevector-type simulator."""
return is_statevector_backend(self._backend)
@property
def is_simulator(self):
"""Return True if backend is a simulator."""
return is_simulator_backend(self._backend)
@property
def is_local(self):
"""Return True if backend is a local backend."""
return is_local_backend(self._backend)
@property
def skip_qobj_validation(self):
"""checks if skip qobj validation"""
return self._skip_qobj_validation
@skip_qobj_validation.setter
def skip_qobj_validation(self, new_value):
"""sets skip qobj validation flag"""
self._skip_qobj_validation = new_value
[docs] def maybe_refresh_cals_matrix(self, timestamp: Optional[float] = None) -> bool:
"""
Calculate the time difference from the query of last time.
Args:
timestamp: timestamp
Returns:
Whether or not refresh the cals_matrix
"""
timestamp = timestamp or 0.0
ret = False
curr_timestamp = time.time()
difference = int(curr_timestamp - timestamp) / 60.0
if difference > self._cals_matrix_refresh_period:
ret = True
return ret
[docs] def cals_matrix(
self, qubit_index: Optional[List[int]] = None
) -> Optional[Union[Tuple[np.ndarray, float], Dict[str, Tuple[np.ndarray, float]]]]:
"""
Get the stored calibration matrices and its timestamp.
Args:
qubit_index: the qubit index of corresponding calibration matrix.
If None, return all stored calibration matrices.
Returns:
The calibration matrix and the creation timestamp if qubit_index
is not None otherwise, return all matrices and their timestamp
in a dictionary.
"""
shots = self._meas_error_mitigation_shots or self._run_config.shots
if qubit_index:
qubit_index_str = "_".join([str(x) for x in qubit_index]) + f"_{shots}"
fitter, timestamp = self._meas_error_mitigation_fitters.get(qubit_index_str, None)
if fitter is not None:
return fitter.cal_matrix, timestamp
else:
return {
k: (v.cal_matrix, t) for k, (v, t) in self._meas_error_mitigation_fitters.items()
}
return None