Source code for qiskit.quantum_info.states.statevector
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Statevector quantum state class.
"""
import copy
import re
from numbers import Number
from typing import Dict
import numpy as np
from qiskit.circuit.quantumcircuit import QuantumCircuit
from qiskit.circuit.instruction import Instruction
from qiskit.exceptions import QiskitError
from qiskit.quantum_info.states.quantum_state import QuantumState
from qiskit.quantum_info.operators.mixins.tolerances import TolerancesMixin
from qiskit.quantum_info.operators.operator import Operator
from qiskit.quantum_info.operators.symplectic import Pauli, SparsePauliOp
from qiskit.quantum_info.operators.op_shape import OpShape
from qiskit.quantum_info.operators.predicates import matrix_equal
# pylint: disable=no-name-in-module
from .cython.exp_value import expval_pauli_no_x, expval_pauli_with_x
[docs]class Statevector(QuantumState, TolerancesMixin):
"""Statevector class"""
def __init__(self, data, dims=None):
"""Initialize a statevector object.
Args:
data (np.array or list or Statevector or Operator or QuantumCircuit or
qiskit.circuit.Instruction):
Data from which the statevector can be constructed. This can be either a complex
vector, another statevector, a ``Operator` with only one column or a
``QuantumCircuit`` or ``Instruction``. If the data is a circuit or instruction,
the statevector is constructed by assuming that all qubits are initialized to the
zero state.
dims (int or tuple or list): Optional. The subsystem dimension of
the state (See additional information).
Raises:
QiskitError: if input data is not valid.
Additional Information:
The ``dims`` kwarg can be None, an integer, or an iterable of
integers.
* ``Iterable`` -- the subsystem dimensions are the values in the list
with the total number of subsystems given by the length of the list.
* ``Int`` or ``None`` -- the length of the input vector
specifies the total dimension of the density matrix. If it is a
power of two the state will be initialized as an N-qubit state.
If it is not a power of two the state will have a single
d-dimensional subsystem.
"""
if isinstance(data, (list, np.ndarray)):
# Finally we check if the input is a raw vector in either a
# python list or numpy array format.
self._data = np.asarray(data, dtype=complex)
elif isinstance(data, Statevector):
self._data = data._data
if dims is None:
dims = data._op_shape._dims_l
elif isinstance(data, Operator):
# We allow conversion of column-vector operators to Statevectors
input_dim, _ = data.dim
if input_dim != 1:
raise QiskitError("Input Operator is not a column-vector.")
self._data = np.ravel(data.data)
elif isinstance(data, (QuantumCircuit, Instruction)):
self._data = Statevector.from_instruction(data).data
else:
raise QiskitError("Invalid input data format for Statevector")
# Check that the input is a numpy vector or column-vector numpy
# matrix. If it is a column-vector matrix reshape to a vector.
ndim = self._data.ndim
shape = self._data.shape
if ndim != 1:
if ndim == 2 and shape[1] == 1:
self._data = np.reshape(self._data, shape[0])
shape = self._data.shape
elif ndim != 2 or shape[1] != 1:
raise QiskitError("Invalid input: not a vector or column-vector.")
super().__init__(op_shape=OpShape.auto(shape=shape, dims_l=dims, num_qubits_r=0))
def __array__(self, dtype=None):
if dtype:
return np.asarray(self.data, dtype=dtype)
return self.data
def __eq__(self, other):
return super().__eq__(other) and np.allclose(
self._data, other._data, rtol=self.rtol, atol=self.atol
)
def __repr__(self):
prefix = "Statevector("
pad = len(prefix) * " "
return "{}{},\n{}dims={})".format(
prefix,
np.array2string(self._data, separator=", ", prefix=prefix),
pad,
self._op_shape.dims_l(),
)
@property
def settings(self) -> Dict:
"""Return settings."""
return {"data": self._data, "dims": self._op_shape.dims_l()}
[docs] def draw(self, output=None, **drawer_args):
"""Return a visualization of the Statevector.
**repr**: ASCII TextMatrix of the state's ``__repr__``.
**text**: ASCII TextMatrix that can be printed in the console.
**latex**: An IPython Latex object for displaying in Jupyter Notebooks.
**latex_source**: Raw, uncompiled ASCII source to generate array using LaTeX.
**qsphere**: Matplotlib figure, rendering of statevector using `plot_state_qsphere()`.
**hinton**: Matplotlib figure, rendering of statevector using `plot_state_hinton()`.
**bloch**: Matplotlib figure, rendering of statevector using `plot_bloch_multivector()`.
**city**: Matplotlib figure, rendering of statevector using `plot_state_city()`.
**paulivec**: Matplotlib figure, rendering of statevector using `plot_state_paulivec()`.
Args:
output (str): Select the output method to use for drawing the
state. Valid choices are `repr`, `text`, `latex`, `latex_source`,
`qsphere`, `hinton`, `bloch`, `city`, or `paulivec`. Default is `repr`.
Default can be changed by adding the line ``state_drawer = <default>`` to
``~/.qiskit/settings.conf`` under ``[default]``.
drawer_args: Arguments to be passed directly to the relevant drawing
function or constructor (`TextMatrix()`, `array_to_latex()`,
`plot_state_qsphere()`, `plot_state_hinton()` or `plot_bloch_multivector()`).
See the relevant function under `qiskit.visualization` for that function's
documentation.
Returns:
:class:`matplotlib.Figure` or :class:`str` or
:class:`TextMatrix` or :class:`IPython.display.Latex`:
Drawing of the Statevector.
Raises:
ValueError: when an invalid output method is selected.
"""
# pylint: disable=cyclic-import
from qiskit.visualization.state_visualization import state_drawer
return state_drawer(self, output=output, **drawer_args)
def _ipython_display_(self):
out = self.draw()
if isinstance(out, str):
print(out)
else:
from IPython.display import display
display(out)
@property
def data(self):
"""Return data."""
return self._data
[docs] def is_valid(self, atol=None, rtol=None):
"""Return True if a Statevector has norm 1."""
if atol is None:
atol = self.atol
if rtol is None:
rtol = self.rtol
norm = np.linalg.norm(self.data)
return np.allclose(norm, 1, rtol=rtol, atol=atol)
[docs] def to_operator(self):
"""Convert state to a rank-1 projector operator"""
mat = np.outer(self.data, np.conj(self.data))
return Operator(mat, input_dims=self.dims(), output_dims=self.dims())
[docs] def conjugate(self):
"""Return the conjugate of the operator."""
return Statevector(np.conj(self.data), dims=self.dims())
[docs] def trace(self):
"""Return the trace of the quantum state as a density matrix."""
return np.sum(np.abs(self.data) ** 2)
[docs] def purity(self):
"""Return the purity of the quantum state."""
# For a valid statevector the purity is always 1, however if we simply
# have an arbitrary vector (not correctly normalized) then the
# purity is equivalent to the trace squared:
# P(|psi>) = Tr[|psi><psi|psi><psi|] = |<psi|psi>|^2
return self.trace() ** 2
[docs] def tensor(self, other):
"""Return the tensor product state self ⊗ other.
Args:
other (Statevector): a quantum state object.
Returns:
Statevector: the tensor product operator self ⊗ other.
Raises:
QiskitError: if other is not a quantum state.
"""
if not isinstance(other, Statevector):
other = Statevector(other)
ret = copy.copy(self)
ret._op_shape = self._op_shape.tensor(other._op_shape)
ret._data = np.kron(self._data, other._data)
return ret
[docs] def expand(self, other):
"""Return the tensor product state other ⊗ self.
Args:
other (Statevector): a quantum state object.
Returns:
Statevector: the tensor product state other ⊗ self.
Raises:
QiskitError: if other is not a quantum state.
"""
if not isinstance(other, Statevector):
other = Statevector(other)
ret = copy.copy(self)
ret._op_shape = self._op_shape.expand(other._op_shape)
ret._data = np.kron(other._data, self._data)
return ret
def _add(self, other):
"""Return the linear combination self + other.
Args:
other (Statevector): a quantum state object.
Returns:
Statevector: the linear combination self + other.
Raises:
QiskitError: if other is not a quantum state, or has
incompatible dimensions.
"""
if not isinstance(other, Statevector):
other = Statevector(other)
self._op_shape._validate_add(other._op_shape)
ret = copy.copy(self)
ret._data = self.data + other.data
return ret
def _multiply(self, other):
"""Return the scalar multiplied state self * other.
Args:
other (complex): a complex number.
Returns:
Statevector: the scalar multiplied state other * self.
Raises:
QiskitError: if other is not a valid complex number.
"""
if not isinstance(other, Number):
raise QiskitError("other is not a number")
ret = copy.copy(self)
ret._data = other * self.data
return ret
[docs] def evolve(self, other, qargs=None):
"""Evolve a quantum state by the operator.
Args:
other (Operator): The operator to evolve by.
qargs (list): a list of Statevector subsystem positions to apply
the operator on.
Returns:
Statevector: the output quantum state.
Raises:
QiskitError: if the operator dimension does not match the
specified Statevector subsystem dimensions.
"""
if qargs is None:
qargs = getattr(other, "qargs", None)
# Get return vector
ret = copy.copy(self)
# Evolution by a circuit or instruction
if isinstance(other, QuantumCircuit):
other = other.to_instruction()
if isinstance(other, Instruction):
if self.num_qubits is None:
raise QiskitError("Cannot apply QuantumCircuit to non-qubit Statevector.")
return self._evolve_instruction(ret, other, qargs=qargs)
# Evolution by an Operator
if not isinstance(other, Operator):
other = Operator(other)
# check dimension
if self.dims(qargs) != other.input_dims():
raise QiskitError(
"Operator input dimensions are not equal to statevector subsystem dimensions."
)
return Statevector._evolve_operator(ret, other, qargs=qargs)
[docs] def equiv(self, other, rtol=None, atol=None):
"""Return True if other is equivalent as a statevector up to global phase.
.. note::
If other is not a Statevector, but can be used to initialize a statevector object,
this will check that Statevector(other) is equivalent to the current statevector up
to global phase.
Args:
other (Statevector): an object from which a ``Statevector`` can be constructed.
rtol (float): relative tolerance value for comparison.
atol (float): absolute tolerance value for comparison.
Returns:
bool: True if statevectors are equivalent up to global phase.
"""
if not isinstance(other, Statevector):
try:
other = Statevector(other)
except QiskitError:
return False
if self.dim != other.dim:
return False
if atol is None:
atol = self.atol
if rtol is None:
rtol = self.rtol
return matrix_equal(self.data, other.data, ignore_phase=True, rtol=rtol, atol=atol)
[docs] def reverse_qargs(self):
r"""Return a Statevector with reversed subsystem ordering.
For a tensor product state this is equivalent to reversing the order
of tensor product subsystems. For a statevector
:math:`|\psi \rangle = |\psi_{n-1} \rangle \otimes ... \otimes |\psi_0 \rangle`
the returned statevector will be
:math:`|\psi_{0} \rangle \otimes ... \otimes |\psi_{n-1} \rangle`.
Returns:
Statevector: the Statevector with reversed subsystem order.
"""
ret = copy.copy(self)
axes = tuple(range(self._op_shape._num_qargs_l - 1, -1, -1))
ret._data = np.reshape(
np.transpose(np.reshape(self.data, self._op_shape.tensor_shape), axes),
self._op_shape.shape,
)
ret._op_shape = self._op_shape.reverse()
return ret
def _expectation_value_pauli(self, pauli, qargs=None):
"""Compute the expectation value of a Pauli.
Args:
pauli (Pauli): a Pauli operator to evaluate expval of.
qargs (None or list): subsystems to apply operator on.
Returns:
complex: the expectation value.
"""
n_pauli = len(pauli)
if qargs is None:
qubits = np.arange(n_pauli)
else:
qubits = np.array(qargs)
x_mask = np.dot(1 << qubits, pauli.x)
z_mask = np.dot(1 << qubits, pauli.z)
pauli_phase = (-1j) ** pauli.phase if pauli.phase else 1
if x_mask + z_mask == 0:
return pauli_phase * np.linalg.norm(self.data)
if x_mask == 0:
return pauli_phase * expval_pauli_no_x(self.data, self.num_qubits, z_mask)
x_max = qubits[pauli.x][-1]
y_phase = (-1j) ** np.sum(pauli.x & pauli.z)
return pauli_phase * expval_pauli_with_x(
self.data, self.num_qubits, z_mask, x_mask, y_phase, x_max
)
[docs] def expectation_value(self, oper, qargs=None):
"""Compute the expectation value of an operator.
Args:
oper (Operator): an operator to evaluate expval of.
qargs (None or list): subsystems to apply operator on.
Returns:
complex: the expectation value.
"""
if isinstance(oper, Pauli):
return self._expectation_value_pauli(oper, qargs)
if isinstance(oper, SparsePauliOp):
return sum(
coeff * self._expectation_value_pauli(Pauli((z, x)), qargs)
for z, x, coeff in zip(oper.table.Z, oper.table.X, oper.coeffs)
)
val = self.evolve(oper, qargs=qargs)
conj = self.conjugate()
return np.dot(conj.data, val.data)
[docs] def probabilities(self, qargs=None, decimals=None):
"""Return the subsystem measurement probability vector.
Measurement probabilities are with respect to measurement in the
computation (diagonal) basis.
Args:
qargs (None or list): subsystems to return probabilities for,
if None return for all subsystems (Default: None).
decimals (None or int): the number of decimal places to round
values. If None no rounding is done (Default: None).
Returns:
np.array: The Numpy vector array of probabilities.
Examples:
Consider a 2-qubit product state
:math:`|\\psi\\rangle=|+\\rangle\\otimes|0\\rangle`.
.. jupyter-execute::
from qiskit.quantum_info import Statevector
psi = Statevector.from_label('+0')
# Probabilities for measuring both qubits
probs = psi.probabilities()
print('probs: {}'.format(probs))
# Probabilities for measuring only qubit-0
probs_qubit_0 = psi.probabilities([0])
print('Qubit-0 probs: {}'.format(probs_qubit_0))
# Probabilities for measuring only qubit-1
probs_qubit_1 = psi.probabilities([1])
print('Qubit-1 probs: {}'.format(probs_qubit_1))
We can also permute the order of qubits in the ``qargs`` list
to change the qubit position in the probabilities output
.. jupyter-execute::
from qiskit.quantum_info import Statevector
psi = Statevector.from_label('+0')
# Probabilities for measuring both qubits
probs = psi.probabilities([0, 1])
print('probs: {}'.format(probs))
# Probabilities for measuring both qubits
# but swapping qubits 0 and 1 in output
probs_swapped = psi.probabilities([1, 0])
print('Swapped probs: {}'.format(probs_swapped))
"""
probs = self._subsystem_probabilities(
np.abs(self.data) ** 2, self._op_shape.dims_l(), qargs=qargs
)
if decimals is not None:
probs = probs.round(decimals=decimals)
return probs
[docs] def reset(self, qargs=None):
"""Reset state or subsystems to the 0-state.
Args:
qargs (list or None): subsystems to reset, if None all
subsystems will be reset to their 0-state
(Default: None).
Returns:
Statevector: the reset state.
Additional Information:
If all subsystems are reset this will return the ground state
on all subsystems. If only a some subsystems are reset this
function will perform a measurement on those subsystems and
evolve the subsystems so that the collapsed post-measurement
states are rotated to the 0-state. The RNG seed for this
sampling can be set using the :meth:`seed` method.
"""
if qargs is None:
# Resetting all qubits does not require sampling or RNG
ret = copy.copy(self)
state = np.zeros(self._op_shape.shape, dtype=complex)
state[0] = 1
ret._data = state
return ret
# Sample a single measurement outcome
dims = self.dims(qargs)
probs = self.probabilities(qargs)
sample = self._rng.choice(len(probs), p=probs, size=1)
# Convert to projector for state update
proj = np.zeros(len(probs), dtype=complex)
proj[sample] = 1 / np.sqrt(probs[sample])
# Rotate outcome to 0
reset = np.eye(len(probs))
reset[0, 0] = 0
reset[sample, sample] = 0
reset[0, sample] = 1
# compose with reset projection
reset = np.dot(reset, np.diag(proj))
return self.evolve(Operator(reset, input_dims=dims, output_dims=dims), qargs=qargs)
[docs] @classmethod
def from_label(cls, label):
"""Return a tensor product of Pauli X,Y,Z eigenstates.
.. list-table:: Single-qubit state labels
:header-rows: 1
* - Label
- Statevector
* - ``"0"``
- :math:`[1, 0]`
* - ``"1"``
- :math:`[0, 1]`
* - ``"+"``
- :math:`[1 / \\sqrt{2}, 1 / \\sqrt{2}]`
* - ``"-"``
- :math:`[1 / \\sqrt{2}, -1 / \\sqrt{2}]`
* - ``"r"``
- :math:`[1 / \\sqrt{2}, i / \\sqrt{2}]`
* - ``"l"``
- :math:`[1 / \\sqrt{2}, -i / \\sqrt{2}]`
Args:
label (string): a eigenstate string ket label (see table for
allowed values).
Returns:
Statevector: The N-qubit basis state density matrix.
Raises:
QiskitError: if the label contains invalid characters, or the
length of the label is larger than an explicitly
specified num_qubits.
"""
# Check label is valid
if re.match(r"^[01rl\-+]+$", label) is None:
raise QiskitError("Label contains invalid characters.")
# We can prepare Z-eigenstates by converting the computational
# basis bit-string to an integer and preparing that unit vector
# However, for X-basis states, we will prepare a Z-eigenstate first
# then apply Hadamard gates to rotate 0 and 1s to + and -.
z_label = label
xy_states = False
if re.match("^[01]+$", label) is None:
# We have X or Y eigenstates so replace +,r with 0 and
# -,l with 1 and prepare the corresponding Z state
xy_states = True
z_label = z_label.replace("+", "0")
z_label = z_label.replace("r", "0")
z_label = z_label.replace("-", "1")
z_label = z_label.replace("l", "1")
# Initialize Z eigenstate vector
num_qubits = len(label)
data = np.zeros(1 << num_qubits, dtype=complex)
pos = int(z_label, 2)
data[pos] = 1
state = Statevector(data)
if xy_states:
# Apply hadamards to all qubits in X eigenstates
x_mat = np.array([[1, 1], [1, -1]], dtype=complex) / np.sqrt(2)
# Apply S.H to qubits in Y eigenstates
y_mat = np.dot(np.diag([1, 1j]), x_mat)
for qubit, char in enumerate(reversed(label)):
if char in ["+", "-"]:
state = state.evolve(x_mat, qargs=[qubit])
elif char in ["r", "l"]:
state = state.evolve(y_mat, qargs=[qubit])
return state
[docs] @staticmethod
def from_int(i, dims):
"""Return a computational basis statevector.
Args:
i (int): the basis state element.
dims (int or tuple or list): The subsystem dimensions of the statevector
(See additional information).
Returns:
Statevector: The computational basis state :math:`|i\\rangle`.
Additional Information:
The ``dims`` kwarg can be an integer or an iterable of integers.
* ``Iterable`` -- the subsystem dimensions are the values in the list
with the total number of subsystems given by the length of the list.
* ``Int`` -- the integer specifies the total dimension of the
state. If it is a power of two the state will be initialized
as an N-qubit state. If it is not a power of two the state
will have a single d-dimensional subsystem.
"""
size = np.product(dims)
state = np.zeros(size, dtype=complex)
state[i] = 1.0
return Statevector(state, dims=dims)
[docs] @classmethod
def from_instruction(cls, instruction):
"""Return the output statevector of an instruction.
The statevector is initialized in the state :math:`|{0,\\ldots,0}\\rangle` of the
same number of qubits as the input instruction or circuit, evolved
by the input instruction, and the output statevector returned.
Args:
instruction (qiskit.circuit.Instruction or QuantumCircuit): instruction or circuit
Returns:
Statevector: The final statevector.
Raises:
QiskitError: if the instruction contains invalid instructions for
the statevector simulation.
"""
# Convert circuit to an instruction
if isinstance(instruction, QuantumCircuit):
instruction = instruction.to_instruction()
# Initialize an the statevector in the all |0> state
init = np.zeros(2 ** instruction.num_qubits, dtype=complex)
init[0] = 1.0
vec = Statevector(init, dims=instruction.num_qubits * (2,))
return Statevector._evolve_instruction(vec, instruction)
[docs] def to_dict(self, decimals=None):
r"""Convert the statevector to dictionary form.
This dictionary representation uses a Ket-like notation where the
dictionary keys are qudit strings for the subsystem basis vectors.
If any subsystem has a dimension greater than 10 comma delimiters are
inserted between integers so that subsystems can be distinguished.
Args:
decimals (None or int): the number of decimal places to round
values. If None no rounding is done
(Default: None).
Returns:
dict: the dictionary form of the Statevector.
Example:
The ket-form of a 2-qubit statevector
:math:`|\psi\rangle = |-\rangle\otimes |0\rangle`
.. jupyter-execute::
from qiskit.quantum_info import Statevector
psi = Statevector.from_label('-0')
print(psi.to_dict())
For non-qubit subsystems the integer range can go from 0 to 9. For
example in a qutrit system
.. jupyter-execute::
import numpy as np
from qiskit.quantum_info import Statevector
vec = np.zeros(9)
vec[0] = 1 / np.sqrt(2)
vec[-1] = 1 / np.sqrt(2)
psi = Statevector(vec, dims=(3, 3))
print(psi.to_dict())
For large subsystem dimensions delimiters are required. The
following example is for a 20-dimensional system consisting of
a qubit and 10-dimensional qudit.
.. jupyter-execute::
import numpy as np
from qiskit.quantum_info import Statevector
vec = np.zeros(2 * 10)
vec[0] = 1 / np.sqrt(2)
vec[-1] = 1 / np.sqrt(2)
psi = Statevector(vec, dims=(2, 10))
print(psi.to_dict())
"""
return self._vector_to_dict(
self.data, self._op_shape.dims_l(), decimals=decimals, string_labels=True
)
@staticmethod
def _evolve_operator(statevec, oper, qargs=None):
"""Evolve a qudit statevector"""
new_shape = statevec._op_shape.compose(oper._op_shape, qargs=qargs)
if qargs is None:
# Full system evolution
statevec._data = np.dot(oper._data, statevec._data)
statevec._op_shape = new_shape
return statevec
# Get transpose axes
num_qargs = statevec._op_shape.num_qargs[0]
indices = [num_qargs - 1 - i for i in reversed(qargs)]
axes = indices + [i for i in range(num_qargs) if i not in indices]
axes_inv = np.argsort(axes).tolist()
# Calculate contraction dimensions
contract_dim = oper._op_shape.shape[1]
contract_shape = (contract_dim, statevec._op_shape.shape[0] // contract_dim)
# Reshape input for contraction
statevec._data = np.reshape(
np.transpose(np.reshape(statevec.data, statevec._op_shape.tensor_shape), axes),
contract_shape,
)
# Contract and reshape output
statevec._data = np.reshape(np.dot(oper.data, statevec._data), new_shape.tensor_shape)
statevec._data = np.reshape(np.transpose(statevec._data, axes_inv), new_shape.shape[0])
# Update dimension
statevec._op_shape = new_shape
return statevec
@staticmethod
def _evolve_instruction(statevec, obj, qargs=None):
"""Update the current Statevector by applying an instruction."""
from qiskit.circuit.reset import Reset
from qiskit.circuit.barrier import Barrier
mat = Operator._instruction_to_matrix(obj)
if mat is not None:
# Perform the composition and inplace update the current state
# of the operator
return Statevector._evolve_operator(statevec, Operator(mat), qargs=qargs)
# Special instruction types
if isinstance(obj, Reset):
statevec._data = statevec.reset(qargs)._data
return statevec
if isinstance(obj, Barrier):
return statevec
# If the instruction doesn't have a matrix defined we use its
# circuit decomposition definition if it exists, otherwise we
# cannot compose this gate and raise an error.
if obj.definition is None:
raise QiskitError(f"Cannot apply Instruction: {obj.name}")
if not isinstance(obj.definition, QuantumCircuit):
raise QiskitError(
"{} instruction definition is {}; expected QuantumCircuit".format(
obj.name, type(obj.definition)
)
)
if obj.definition.global_phase:
statevec._data *= np.exp(1j * float(obj.definition.global_phase))
qubits = {qubit: i for i, qubit in enumerate(obj.definition.qubits)}
for instr, qregs, cregs in obj.definition:
if cregs:
raise QiskitError(
f"Cannot apply instruction with classical registers: {instr.name}"
)
# Get the integer position of the flat register
if qargs is None:
new_qargs = [qubits[tup] for tup in qregs]
else:
new_qargs = [qargs[qubits[tup]] for tup in qregs]
Statevector._evolve_instruction(statevec, instr, qargs=new_qargs)
return statevec