Source code for qiskit.optimization.converters.linear_equality_to_penalty
# This code is part of Qiskit.
#
# (C) Copyright IBM 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Converter to convert a problem with equality constraints to unconstrained with penalty terms."""
import copy
import logging
from math import fsum
from typing import Optional, cast, Union, Tuple, List
import numpy as np
from .quadratic_program_converter import QuadraticProgramConverter
from ..exceptions import QiskitOptimizationError
from ..problems.constraint import Constraint
from ..problems.quadratic_objective import QuadraticObjective
from ..problems.quadratic_program import QuadraticProgram
from ..problems.variable import Variable
logger = logging.getLogger(__name__)
[docs]class LinearEqualityToPenalty(QuadraticProgramConverter):
"""Convert a problem with only equality constraints to unconstrained with penalty terms."""
def __init__(self, penalty: Optional[float] = None) -> None:
"""
Args:
penalty: Penalty factor to scale equality constraints that are added to objective.
If None is passed, penalty factor will be automatically calculated.
"""
self._src = None # type: Optional[QuadraticProgram]
self._dst = None # type: Optional[QuadraticProgram]
self._penalty = penalty # type: Optional[float]
[docs] def convert(self, problem: QuadraticProgram) -> QuadraticProgram:
"""Convert a problem with equality constraints into an unconstrained problem.
Args:
problem: The problem to be solved, that does not contain inequality constraints.
Returns:
The converted problem, that is an unconstrained problem.
Raises:
QiskitOptimizationError: If an inequality constraint exists.
"""
# create empty QuadraticProgram model
self._src = copy.deepcopy(problem)
self._dst = QuadraticProgram(name=problem.name)
# If penalty is None, set the penalty coefficient by _auto_define_penalty()
if self._penalty is None:
penalty = self._auto_define_penalty()
else:
penalty = self._penalty
# Set variables
for x in self._src.variables:
if x.vartype == Variable.Type.CONTINUOUS:
self._dst.continuous_var(x.lowerbound, x.upperbound, x.name)
elif x.vartype == Variable.Type.BINARY:
self._dst.binary_var(x.name)
elif x.vartype == Variable.Type.INTEGER:
self._dst.integer_var(x.lowerbound, x.upperbound, x.name)
else:
raise QiskitOptimizationError('Unsupported vartype: {}'.format(x.vartype))
# get original objective terms
offset = self._src.objective.constant
linear = self._src.objective.linear.to_dict()
quadratic = self._src.objective.quadratic.to_dict()
sense = self._src.objective.sense.value
# convert linear constraints into penalty terms
for constraint in self._src.linear_constraints:
if constraint.sense != Constraint.Sense.EQ:
raise QiskitOptimizationError(
'An inequality constraint exists. '
'The method supports only equality constraints.'
)
constant = constraint.rhs
row = constraint.linear.to_dict()
# constant parts of penalty*(Constant-func)**2: penalty*(Constant**2)
offset += sense * penalty * constant ** 2
# linear parts of penalty*(Constant-func)**2: penalty*(-2*Constant*func)
for j, coef in row.items():
# if j already exists in the linear terms dic, add a penalty term
# into existing value else create new key and value in the linear_term dict
linear[j] = linear.get(j, 0.0) + sense * penalty * -2 * coef * constant
# quadratic parts of penalty*(Constant-func)**2: penalty*(func**2)
for j, coef_1 in row.items():
for k, coef_2 in row.items():
# if j and k already exist in the quadratic terms dict,
# add a penalty term into existing value
# else create new key and value in the quadratic term dict
# according to implementation of quadratic terms in OptimizationModel,
# don't need to multiply by 2, since loops run over (x, y) and (y, x).
tup = cast(Union[Tuple[int, int], Tuple[str, str]], (j, k))
quadratic[tup] = quadratic.get(tup, 0.0) + sense * penalty * coef_1 * coef_2
if self._src.objective.sense == QuadraticObjective.Sense.MINIMIZE:
self._dst.minimize(offset, linear, quadratic)
else:
self._dst.maximize(offset, linear, quadratic)
return self._dst
def _auto_define_penalty(self) -> float:
"""Automatically define the penalty coefficient.
Returns:
Return the minimum valid penalty factor calculated
from the upper bound and the lower bound of the objective function.
If a constraint has a float coefficient,
return the default value for the penalty factor.
"""
default_penalty = 1e5
# Check coefficients of constraints.
# If a constraint has a float coefficient, return the default value for the penalty factor.
terms = []
for constraint in self._src.linear_constraints:
terms.append(constraint.rhs)
terms.extend(coef for coef in constraint.linear.to_dict().values())
if any(isinstance(term, float) and not term.is_integer() for term in terms):
logger.warning(
'Warning: Using %f for the penalty coefficient because '
'a float coefficient exists in constraints. \n'
'The value could be too small. '
'If so, set the penalty coefficient manually.',
default_penalty,
)
return default_penalty
# (upper bound - lower bound) can be calculate as the sum of absolute value of coefficients
# Firstly, add 1 to guarantee that infeasible answers will be greater than upper bound.
penalties = [1.0]
# add linear terms of the object function.
penalties.extend(abs(coef) for coef in self._src.objective.linear.to_dict().values())
# add quadratic terms of the object function.
penalties.extend(abs(coef) for coef in self._src.objective.quadratic.to_dict().values())
return fsum(penalties)
[docs] def interpret(self, x: Union[np.ndarray, List[float]]) -> np.ndarray:
"""Convert the result of the converted problem back to that of the original problem
Args:
x: The result of the converted problem or the given result in case of FAILURE.
Returns:
The result of the original problem.
Raises:
QiskitOptimizationError: if the number of variables in the result differs from
that of the original problem.
"""
if len(x) != self._src.get_num_vars():
raise QiskitOptimizationError(
'The number of variables in the passed result differs from '
'that of the original problem.'
)
return np.asarray(x)
@property
def penalty(self) -> Optional[float]:
"""Returns the penalty factor used in conversion.
Returns:
The penalty factor used in conversion.
"""
return self._penalty
@penalty.setter
def penalty(self, penalty: Optional[float]) -> None:
"""Set a new penalty factor.
Args:
penalty: The new penalty factor.
If None is passed, penalty factor will be automatically calculated.
"""
self._penalty = penalty