Source code for qiskit.optimization.converters.inequality_to_equality
# This code is part of Qiskit.
#
# (C) Copyright IBM 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""The inequality to equality converter."""
import copy
import logging
import math
from typing import List, Optional, Union
import numpy as np
from .quadratic_program_converter import QuadraticProgramConverter
from ..exceptions import QiskitOptimizationError
from ..problems.constraint import Constraint
from ..problems.quadratic_objective import QuadraticObjective
from ..problems.quadratic_program import QuadraticProgram
from ..problems.variable import Variable
logger = logging.getLogger(__name__)
[docs]class InequalityToEquality(QuadraticProgramConverter):
"""Convert inequality constraints into equality constraints by introducing slack variables.
Examples:
>>> from qiskit.optimization.problems import QuadraticProgram
>>> from qiskit.optimization.converters import InequalityToEquality
>>> problem = QuadraticProgram()
>>> # define a problem
>>> conv = InequalityToEquality()
>>> problem2 = conv.convert(problem)
"""
_delimiter = '@' # users are supposed not to use this character in variable names
def __init__(self, mode: str = 'auto') -> None:
"""
Args:
mode: To chose the type of slack variables. There are 3 options for mode.
- 'integer': All slack variables will be integer variables.
- 'continuous': All slack variables will be continuous variables
- 'auto': Try to use integer variables but if it's not possible,
use continuous variables
"""
self._src = None # type: Optional[QuadraticProgram]
self._dst = None # type: Optional[QuadraticProgram]
self._mode = mode
[docs] def convert(self, problem: QuadraticProgram) -> QuadraticProgram:
"""Convert a problem with inequality constraints into one with only equality constraints.
Args:
problem: The problem to be solved, that may contain inequality constraints.
Returns:
The converted problem, that contain only equality constraints.
Raises:
QiskitOptimizationError: If a variable type is not supported.
QiskitOptimizationError: If an unsupported mode is selected.
QiskitOptimizationError: If an unsupported sense is specified.
"""
self._src = copy.deepcopy(problem)
self._dst = QuadraticProgram(name=problem.name)
# set a converting mode
mode = self._mode
# Copy variables
for x in self._src.variables:
if x.vartype == Variable.Type.BINARY:
self._dst.binary_var(name=x.name)
elif x.vartype == Variable.Type.INTEGER:
self._dst.integer_var(
name=x.name, lowerbound=x.lowerbound, upperbound=x.upperbound
)
elif x.vartype == Variable.Type.CONTINUOUS:
self._dst.continuous_var(
name=x.name, lowerbound=x.lowerbound, upperbound=x.upperbound
)
else:
raise QiskitOptimizationError(
"Unsupported variable type {}".format(x.vartype))
# Copy the objective function
constant = self._src.objective.constant
linear = self._src.objective.linear.to_dict(use_name=True)
quadratic = self._src.objective.quadratic.to_dict(use_name=True)
if self._src.objective.sense == QuadraticObjective.Sense.MINIMIZE:
self._dst.minimize(constant, linear, quadratic)
else:
self._dst.maximize(constant, linear, quadratic)
# For linear constraints
for l_constraint in self._src.linear_constraints:
linear = l_constraint.linear.to_dict(use_name=True)
if l_constraint.sense == Constraint.Sense.EQ:
self._dst.linear_constraint(
linear, l_constraint.sense, l_constraint.rhs, l_constraint.name
)
elif (
l_constraint.sense == Constraint.Sense.LE
or l_constraint.sense == Constraint.Sense.GE
):
if mode == 'integer':
self._add_integer_slack_var_linear_constraint(
linear, l_constraint.sense, l_constraint.rhs, l_constraint.name
)
elif mode == 'continuous':
self._add_continuous_slack_var_linear_constraint(
linear, l_constraint.sense, l_constraint.rhs, l_constraint.name
)
elif mode == 'auto':
self._add_auto_slack_var_linear_constraint(
linear, l_constraint.sense, l_constraint.rhs, l_constraint.name
)
else:
raise QiskitOptimizationError(
'Unsupported mode is selected: {}'.format(mode))
else:
raise QiskitOptimizationError(
'Type of sense in {} is not supported'.format(
l_constraint.name)
)
# For quadratic constraints
for q_constraint in self._src.quadratic_constraints:
linear = q_constraint.linear.to_dict(use_name=True)
quadratic = q_constraint.quadratic.to_dict(use_name=True)
if q_constraint.sense == Constraint.Sense.EQ:
self._dst.quadratic_constraint(
linear, quadratic, q_constraint.sense, q_constraint.rhs, q_constraint.name
)
elif (
q_constraint.sense == Constraint.Sense.LE
or q_constraint.sense == Constraint.Sense.GE
):
if mode == 'integer':
self._add_integer_slack_var_quadratic_constraint(
linear, quadratic, q_constraint.sense, q_constraint.rhs, q_constraint.name,
)
elif mode == 'continuous':
self._add_continuous_slack_var_quadratic_constraint(
linear, quadratic, q_constraint.sense, q_constraint.rhs, q_constraint.name,
)
elif mode == 'auto':
self._add_auto_slack_var_quadratic_constraint(
linear, quadratic, q_constraint.sense, q_constraint.rhs, q_constraint.name,
)
else:
raise QiskitOptimizationError(
'Unsupported mode is selected: {}'.format(mode))
else:
raise QiskitOptimizationError(
'Type of sense in {} is not supported'.format(
q_constraint.name)
)
return self._dst
def _add_integer_slack_var_linear_constraint(self, linear, sense, rhs, name):
# If a coefficient that is not integer exist, raise error
if self._contains_any_float_value(linear.values()):
raise QiskitOptimizationError(
'"{0}" contains float coefficients. '
'We can not use an integer slack variable for "{0}"'.format(name))
# If rhs is float number, round up/down to the nearest integer.
new_rhs = rhs
if sense == Constraint.Sense.LE:
new_rhs = math.floor(rhs)
if sense == Constraint.Sense.GE:
new_rhs = math.ceil(rhs)
# Add a new integer variable.
slack_name = name + self._delimiter + 'int_slack'
lhs_lb, lhs_ub = self._calc_linear_bounds(linear)
var_added = False
if sense == Constraint.Sense.LE:
var_ub = new_rhs - lhs_lb
if var_ub > 0:
sign = 1
self._dst.integer_var(
name=slack_name, lowerbound=0, upperbound=var_ub)
var_added = True
elif sense == Constraint.Sense.GE:
var_ub = lhs_ub - new_rhs
if var_ub > 0:
sign = -1
self._dst.integer_var(
name=slack_name, lowerbound=0, upperbound=var_ub)
var_added = True
else:
raise QiskitOptimizationError(
'The type of Sense in {} is not supported'.format(name))
# Add a new equality constraint.
new_linear = copy.deepcopy(linear)
if var_added:
new_linear[slack_name] = sign
self._dst.linear_constraint(new_linear, "==", new_rhs, name)
def _add_continuous_slack_var_linear_constraint(self, linear, sense, rhs, name):
slack_name = name + self._delimiter + 'continuous_slack'
lhs_lb, lhs_ub = self._calc_linear_bounds(linear)
var_added = False
if sense == Constraint.Sense.LE:
var_ub = rhs - lhs_lb
if var_ub > 0:
sign = 1
self._dst.continuous_var(
name=slack_name, lowerbound=0, upperbound=var_ub)
var_added = True
elif sense == Constraint.Sense.GE:
var_ub = lhs_ub - rhs
if var_ub > 0:
sign = -1
self._dst.continuous_var(
name=slack_name, lowerbound=0, upperbound=var_ub)
var_added = True
else:
raise QiskitOptimizationError(
'The type of Sense in {} is not supported'.format(name))
# Add a new equality constraint.
new_linear = copy.deepcopy(linear)
if var_added:
new_linear[slack_name] = sign
self._dst.linear_constraint(new_linear, "==", rhs, name)
def _add_auto_slack_var_linear_constraint(self, linear, sense, rhs, name):
# If a coefficient that is not integer exist, use a continuous slack variable
if self._contains_any_float_value(list(linear.values())):
self._add_continuous_slack_var_linear_constraint(
linear, sense, rhs, name)
# Else use an integer slack variable
else:
self._add_integer_slack_var_linear_constraint(
linear, sense, rhs, name)
def _add_integer_slack_var_quadratic_constraint(self, linear, quadratic, sense, rhs, name):
# If a coefficient that is not integer exist, raise an error
if (self._contains_any_float_value(list(linear.values()))
or self._contains_any_float_value(list(quadratic.values()))):
raise QiskitOptimizationError(
'"{0}" contains float coefficients. '
'We can not use an integer slack variable for "{0}"'.format(name))
# If rhs is float number, round up/down to the nearest integer.
new_rhs = rhs
if sense == Constraint.Sense.LE:
new_rhs = math.floor(rhs)
if sense == Constraint.Sense.GE:
new_rhs = math.ceil(rhs)
# Add a new integer variable.
slack_name = name + self._delimiter + 'int_slack'
lhs_lb, lhs_ub = self._calc_quadratic_bounds(linear, quadratic)
var_added = False
if sense == Constraint.Sense.LE:
var_ub = new_rhs - lhs_lb
if var_ub > 0:
sign = 1
self._dst.integer_var(
name=slack_name, lowerbound=0, upperbound=var_ub)
var_added = True
elif sense == Constraint.Sense.GE:
var_ub = lhs_ub - new_rhs
if var_ub > 0:
sign = -1
self._dst.integer_var(
name=slack_name, lowerbound=0, upperbound=var_ub)
var_added = True
else:
raise QiskitOptimizationError(
'The type of Sense in {} is not supported'.format(name))
# Add a new equality constraint.
new_linear = copy.deepcopy(linear)
if var_added:
new_linear[slack_name] = sign
self._dst.quadratic_constraint(
new_linear, quadratic, "==", new_rhs, name)
def _add_continuous_slack_var_quadratic_constraint(self, linear, quadratic, sense, rhs, name):
# Add a new continuous variable.
slack_name = name + self._delimiter + 'continuous_slack'
lhs_lb, lhs_ub = self._calc_quadratic_bounds(linear, quadratic)
var_added = False
if sense == Constraint.Sense.LE:
var_ub = rhs - lhs_lb
if var_ub > 0:
sign = 1
self._dst.continuous_var(
name=slack_name, lowerbound=0, upperbound=var_ub)
var_added = True
elif sense == Constraint.Sense.GE:
var_ub = lhs_ub - rhs
if var_ub > 0:
sign = -1
self._dst.continuous_var(
name=slack_name, lowerbound=0, upperbound=lhs_ub - rhs)
var_added = True
else:
raise QiskitOptimizationError(
'The type of Sense in {} is not supported'.format(name))
# Add a new equality constraint.
new_linear = copy.deepcopy(linear)
if var_added:
new_linear[slack_name] = sign
self._dst.quadratic_constraint(new_linear, quadratic, "==", rhs, name)
def _add_auto_slack_var_quadratic_constraint(self, linear, quadratic, sense, rhs, name):
# If a coefficient that is not integer exist, use a continuous slack variable
if (self._contains_any_float_value(list(linear.values()))
or self._contains_any_float_value(list(quadratic.values()))):
self._add_continuous_slack_var_quadratic_constraint(linear, quadratic, sense, rhs, name)
# Else use an integer slack variable
else:
self._add_integer_slack_var_quadratic_constraint(linear, quadratic, sense, rhs, name)
def _calc_linear_bounds(self, linear):
lhs_lb, lhs_ub = 0, 0
for var_name, v in linear.items():
x = self._src.get_variable(var_name)
lhs_lb += min(x.lowerbound * v, x.upperbound * v)
lhs_ub += max(x.lowerbound * v, x.upperbound * v)
return lhs_lb, lhs_ub
def _calc_quadratic_bounds(self, linear, quadratic):
lhs_lb, lhs_ub = 0, 0
# Calculate the lowerbound and the upperbound of the linear part
linear_lb, linear_ub = self._calc_linear_bounds(linear)
lhs_lb += linear_lb
lhs_ub += linear_ub
# Calculate the lowerbound and the upperbound of the quadratic part
for (name_i, name_j), v in quadratic.items():
x = self._src.get_variable(name_i)
y = self._src.get_variable(name_j)
lhs_lb += min(
x.lowerbound * y.lowerbound * v,
x.lowerbound * y.upperbound * v,
x.upperbound * y.lowerbound * v,
x.upperbound * y.upperbound * v,
)
lhs_ub += max(
x.lowerbound * y.lowerbound * v,
x.lowerbound * y.upperbound * v,
x.upperbound * y.lowerbound * v,
x.upperbound * y.upperbound * v,
)
return lhs_lb, lhs_ub
[docs] def interpret(self, x: Union[np.ndarray, List[float]]) -> np.ndarray:
"""Convert a result of a converted problem into that of the original problem.
Args:
x: The result of the converted problem or the given result in case of FAILURE.
Returns:
The result of the original problem.
"""
# convert back the optimization result into that of the original problem
names = [var.name for var in self._dst.variables]
# interpret slack variables
sol = {name: x[i] for i, name in enumerate(names)}
new_x = np.zeros(self._src.get_num_vars())
for i, var in enumerate(self._src.variables):
new_x[i] = sol[var.name]
return new_x
@staticmethod
def _contains_any_float_value(values: List[Union[int, float]]) -> bool:
"""Check whether the list contains float or not.
This method is used to check whether a constraint contain float coefficients or not.
Args:
values: Coefficients of the constraint
Returns:
bool: If the constraint contains float coefficients, this returns True, else False.
"""
return any(isinstance(v, float) and not v.is_integer() for v in values) # type: ignore
@property
def mode(self) -> str:
"""Returns the mode of the converter
Returns:
The mode of the converter used for additional slack variables
"""
return self._mode
@mode.setter
def mode(self, mode: str) -> None:
"""Set a new mode for the converter
Args:
mode: The new mode for the converter
"""
self._mode = mode