Source code for qiskit.optimization.algorithms.minimum_eigen_optimizer
# This code is part of Qiskit.
#
# (C) Copyright IBM 2020, 2021.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""A wrapper for minimum eigen solvers from Aqua to be used within the optimization module."""
from typing import Optional, Any, Union, List, cast
import numpy as np
from qiskit.aqua.algorithms import MinimumEigensolver, MinimumEigensolverResult
from qiskit.aqua.operators import StateFn, DictStateFn
from .optimization_algorithm import (OptimizationResultStatus, OptimizationAlgorithm,
OptimizationResult, SolutionSample)
from .. import QiskitOptimizationError
from ..converters.quadratic_program_to_qubo import QuadraticProgramToQubo, QuadraticProgramConverter
from ..problems.quadratic_program import QuadraticProgram, Variable
[docs]class MinimumEigenOptimizationResult(OptimizationResult):
""" Minimum Eigen Optimizer Result."""
def __init__(self, x: Union[List[float], np.ndarray], fval: float, variables: List[Variable],
status: OptimizationResultStatus,
samples: Optional[List[SolutionSample]] = None,
min_eigen_solver_result: Optional[MinimumEigensolverResult] = None,
raw_samples: Optional[List[SolutionSample]] = None) -> None:
"""
Args:
x: the optimal value found by ``MinimumEigensolver``.
fval: the optimal function value.
variables: the list of variables of the optimization problem.
status: the termination status of the optimization algorithm.
min_eigen_solver_result: the result obtained from the underlying algorithm.
samples: the x value, the objective function value of the original problem,
the probability, and the status of sampling.
raw_samples: the x values of the QUBO, the objective function value of the QUBO,
and the probability of sampling.
"""
super().__init__(x=x, fval=fval, variables=variables, status=status, raw_results=None,
samples=samples)
self._min_eigen_solver_result = min_eigen_solver_result
self._raw_samples = raw_samples
@property
def min_eigen_solver_result(self) -> MinimumEigensolverResult:
"""Returns a result object obtained from the instance of :class:`MinimumEigensolver`."""
return self._min_eigen_solver_result
[docs] def get_correlations(self) -> np.ndarray:
"""Get <Zi x Zj> correlation matrix from samples."""
states = [v.x for v in self.samples]
probs = [v.probability for v in self.samples]
n = len(states[0])
correlations = np.zeros((n, n))
for k, prob in enumerate(probs):
b = states[k]
for i in range(n):
for j in range(i):
if b[i] == b[j]:
correlations[i, j] += prob
else:
correlations[i, j] -= prob
return correlations
@property
def raw_samples(self) -> Optional[List[SolutionSample]]:
"""Returns the list of raw solution samples of ``MinimumEigensolver``.
Returns:
The list of raw solution samples of ``MinimumEigensolver``.
"""
return self._raw_samples
[docs]class MinimumEigenOptimizer(OptimizationAlgorithm):
"""A wrapper for minimum eigen solvers from Qiskit Aqua.
This class provides a wrapper for minimum eigen solvers from Qiskit to be used within
the optimization module.
It assumes a problem consisting only of binary or integer variables as well as linear equality
constraints thereof. It converts such a problem into a Quadratic Unconstrained Binary
Optimization (QUBO) problem by expanding integer variables into binary variables and by adding
the linear equality constraints as weighted penalty terms to the objective function. The
resulting QUBO is then translated into an Ising Hamiltonian whose minimal eigen vector and
corresponding eigenstate correspond to the optimal solution of the original optimization
problem. The provided minimum eigen solver is then used to approximate the ground state of the
Hamiltonian to find a good solution for the optimization problem.
Examples:
Outline of how to use this class:
.. code-block::
from qiskit.aqua.algorithms import QAOA
from qiskit.optimization.problems import QuadraticProgram
from qiskit.optimization.algorithms import MinimumEigenOptimizer
problem = QuadraticProgram()
# specify problem here
# specify minimum eigen solver to be used, e.g., QAOA
qaoa = QAOA(...)
optimizer = MinimumEigenOptimizer(qaoa)
result = optimizer.solve(problem)
"""
def __init__(self, min_eigen_solver: MinimumEigensolver, penalty: Optional[float] = None,
converters: Optional[Union[QuadraticProgramConverter,
List[QuadraticProgramConverter]]] = None) -> None:
"""
This initializer takes the minimum eigen solver to be used to approximate the ground state
of the resulting Hamiltonian as well as a optional penalty factor to scale penalty terms
representing linear equality constraints. If no penalty factor is provided, a default
is computed during the algorithm (TODO).
Args:
min_eigen_solver: The eigen solver to find the ground state of the Hamiltonian.
penalty: The penalty factor to be used, or ``None`` for applying a default logic.
converters: The converters to use for converting a problem into a different form.
By default, when None is specified, an internally created instance of
:class:`~qiskit.optimization.converters.QuadraticProgramToQubo` will be used.
Raises:
TypeError: When one of converters has an invalid type.
QiskitOptimizationError: When the minimum eigensolver does not return an eigenstate.
"""
if not min_eigen_solver.supports_aux_operators():
raise QiskitOptimizationError('Given MinimumEigensolver does not return the eigenstate '
+ 'and is not supported by the MinimumEigenOptimizer.')
self._min_eigen_solver = min_eigen_solver
self._penalty = penalty
self._converters = self._prepare_converters(converters, penalty)
[docs] def get_compatibility_msg(self, problem: QuadraticProgram) -> str:
"""Checks whether a given problem can be solved with this optimizer.
Checks whether the given problem is compatible, i.e., whether the problem can be converted
to a QUBO, and otherwise, returns a message explaining the incompatibility.
Args:
problem: The optimization problem to check compatibility.
Returns:
A message describing the incompatibility.
"""
return QuadraticProgramToQubo.get_compatibility_msg(problem)
@property
def min_eigen_solver(self) -> MinimumEigensolver:
"""Returns the minimum eigensolver."""
return self._min_eigen_solver
@min_eigen_solver.setter
def min_eigen_solver(self, min_eigen_solver: MinimumEigensolver) -> None:
"""Sets the minimum eigensolver."""
self._min_eigen_solver = min_eigen_solver
[docs] def solve(self, problem: QuadraticProgram) -> MinimumEigenOptimizationResult:
"""Tries to solves the given problem using the optimizer.
Runs the optimizer to try to solve the optimization problem.
Args:
problem: The problem to be solved.
Returns:
The result of the optimizer applied to the problem.
Raises:
QiskitOptimizationError: If problem not compatible.
"""
self._verify_compatibility(problem)
# convert problem to QUBO
problem_ = self._convert(problem, self._converters)
# construct operator and offset
operator, offset = problem_.to_ising()
# only try to solve non-empty Ising Hamiltonians
x = None # type: Optional[Any]
eigen_result = None # type: MinimumEigensolverResult
if operator.num_qubits > 0:
# approximate ground state of operator using min eigen solver
eigen_result = self._min_eigen_solver.compute_minimum_eigenvalue(operator)
# analyze results
# backend = getattr(self._min_eigen_solver, 'quantum_instance', None)
fval = None
x = None
raw_samples = None
if eigen_result.eigenstate is not None:
raw_samples = _eigenvector_to_solutions(eigen_result.eigenstate, problem_)
# print(offset, samples)
# samples = [(res[0], problem_.objective.sense.value * (res[1] + offset), res[2])
# for res in samples]
raw_samples.sort(key=lambda x: problem_.objective.sense.value * x.fval)
x = raw_samples[0].x
fval = raw_samples[0].fval
# if Hamiltonian is empty, then the objective function is constant to the offset
else:
x = np.zeros(problem_.get_num_binary_vars())
fval = offset
raw_samples = [SolutionSample(x, fval, 1.0, OptimizationResultStatus.SUCCESS)]
if fval is None or x is None:
# if not function value is given, then something went wrong, e.g., a
# NumPyMinimumEigensolver has been configured with an infeasible filter criterion.
return MinimumEigenOptimizationResult(x=None, fval=None,
variables=problem.variables,
status=OptimizationResultStatus.FAILURE,
samples=None, raw_samples=None,
min_eigen_solver_result=eigen_result)
# translate result back to integers
samples = self._interpret_samples(problem, raw_samples)
return cast(MinimumEigenOptimizationResult,
self._interpret(x=x, converters=self._converters, problem=problem,
result_class=MinimumEigenOptimizationResult,
samples=samples, raw_samples=raw_samples,
min_eigen_solver_result=eigen_result))
def _interpret_samples(self, problem: QuadraticProgram, raw_samples: List[SolutionSample]) \
-> List[SolutionSample]:
prob = {} # type: dict
array = {}
for sample in raw_samples:
x = sample.x
for converter in self._converters[::-1]:
x = converter.interpret(x)
key = tuple(x)
prob[key] = prob.get(key, 0.0) + sample.probability
array[key] = x
samples = []
for key, x in array.items():
probability = prob[key]
fval = problem.objective.evaluate(x)
status = self._get_feasibility_status(problem, x)
samples.append(SolutionSample(x, fval, probability, status))
return sorted(samples,
key=lambda v: (v.status.value, problem.objective.sense.value * v.fval))
def _eigenvector_to_solutions(eigenvector: Union[dict, np.ndarray, StateFn],
qubo: QuadraticProgram,
min_probability: float = 1e-6,
) -> List[SolutionSample]:
"""Convert the eigenvector to the bitstrings and corresponding eigenvalues.
Args:
eigenvector: The eigenvector from which the solution states are extracted.
qubo: The QUBO to evaluate at the bitstring.
min_probability: Only consider states where the amplitude exceeds this threshold.
Returns:
For each computational basis state contained in the eigenvector, return the basis
state as bitstring along with the QUBO evaluated at that bitstring and the
probability of sampling this bitstring from the eigenvector.
Examples:
>>> op = MatrixOp(numpy.array([[1, 1], [1, -1]]) / numpy.sqrt(2))
>>> eigenvectors = {'0': 12, '1': 1}
>>> print(eigenvector_to_solutions(eigenvectors, op))
[('0', 0.7071067811865475, 0.9230769230769231),
('1', -0.7071067811865475, 0.07692307692307693)]
>>> op = MatrixOp(numpy.array([[1, 1], [1, -1]]) / numpy.sqrt(2))
>>> eigenvectors = numpy.array([1, 1] / numpy.sqrt(2), dtype=complex)
>>> print(eigenvector_to_solutions(eigenvectors, op))
[('0', 0.7071067811865475, 0.4999999999999999),
('1', -0.7071067811865475, 0.4999999999999999)]
Raises:
TypeError: If the type of eigenvector is not supported.
"""
if isinstance(eigenvector, DictStateFn):
eigenvector = {bitstr: val ** 2 for (bitstr, val) in eigenvector.primitive.items()}
elif isinstance(eigenvector, StateFn):
eigenvector = eigenvector.to_matrix()
def generate_solution(bitstr, qubo, probability):
x = np.fromiter(list(bitstr), dtype=int)
fval = qubo.objective.evaluate(x)
return SolutionSample(x=x, fval=fval, probability=probability,
status=OptimizationResultStatus.SUCCESS)
solutions = []
if isinstance(eigenvector, dict):
all_counts = sum(eigenvector.values())
# iterate over all samples
for bitstr, count in eigenvector.items():
sampling_probability = count / all_counts
# add the bitstring, if the sampling probability exceeds the threshold
if sampling_probability >= min_probability:
solutions.append(generate_solution(bitstr, qubo, sampling_probability))
elif isinstance(eigenvector, np.ndarray):
num_qubits = int(np.log2(eigenvector.size))
probabilities = np.abs(eigenvector * eigenvector.conj())
# iterate over all states and their sampling probabilities
for i, sampling_probability in enumerate(probabilities):
# add the i-th state if the sampling probability exceeds the threshold
if sampling_probability >= min_probability:
bitstr = '{:b}'.format(i).rjust(num_qubits, '0')[::-1]
solutions.append(generate_solution(bitstr, qubo, sampling_probability))
else:
raise TypeError('Unsupported format of eigenvector. Provide a dict or numpy.ndarray.')
return solutions