Source code for qiskit.finance.data_providers.random_data_provider
# This code is part of Qiskit.
#
# (C) Copyright IBM 2019, 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
""" Pseudo-randomly generated mock stock-market data provider """
from typing import Optional, Union, List
import datetime
import logging
import numpy as np
from qiskit.aqua import MissingOptionalLibraryError
from ._base_data_provider import BaseDataProvider
try:
import pandas as pd
_HAS_PANDAS = True
except ImportError:
_HAS_PANDAS = False
logger = logging.getLogger(__name__)
[docs]class RandomDataProvider(BaseDataProvider):
"""Pseudo-randomly generated mock stock-market data provider.
"""
def __init__(self,
tickers: Optional[Union[str, List[str]]] = None,
start: datetime.datetime = datetime.datetime(2016, 1, 1),
end: datetime.datetime = datetime.datetime(2016, 1, 30),
seed: Optional[int] = None) -> None:
"""
Initializer
Args:
tickers: tickers
start: first data point
end: last data point precedes this date
seed: shall a seed be used?
Raises:
MissingOptionalLibraryError: Pandas not installed
"""
super().__init__()
if not _HAS_PANDAS:
raise MissingOptionalLibraryError(
libname='Pandas',
name='RandomDataProvider',
pip_install='pip install pandas')
tickers = tickers if tickers is not None else ["TICKER1", "TICKER2"]
if isinstance(tickers, list):
self._tickers = tickers
else:
self._tickers = tickers.replace('\n', ';').split(";")
self._n = len(self._tickers)
self._start = start
self._end = end
self._seed = seed
[docs] def run(self) -> None:
"""
Generates data pseudo-randomly, thus enabling get_similarity_matrix
and get_covariance_matrix methods in the base class.
"""
length = (self._end - self._start).days
generator = np.random.default_rng(self._seed)
self._data = []
for _ in self._tickers:
d_f = pd.DataFrame(
generator.standard_normal(length)).cumsum() + generator.integers(1, 101)
trimmed = np.maximum(d_f[0].values, np.zeros(len(d_f[0].values)))
trimmed_list = trimmed.tolist()
# find index of first 0 element
zero_idx = next((idx for idx, val in enumerate(trimmed_list) if val == 0), -1)
if zero_idx >= 0:
# set to 0 all values after first 0
trimmed_list = \
[val if idx < zero_idx else 0 for idx, val in enumerate(trimmed_list)]
self._data.append(trimmed_list)