Source code for qiskit.chemistry.algorithms.minimum_eigen_solvers.vqe_adapt
# This code is part of Qiskit.
#
# (C) Copyright IBM 2018, 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
An adaptive VQE implementation.
"""
from typing import Optional, List, Union, Dict
import logging
import warnings
import re
import numpy as np
from qiskit.providers import BaseBackend
from qiskit.providers import Backend
from qiskit import ClassicalRegister
from qiskit.aqua import QuantumInstance, AquaError
from qiskit.aqua.algorithms import VQAlgorithm, VQE, VQEResult
from qiskit.chemistry.components.variational_forms import UCCSD
from qiskit.aqua.operators import WeightedPauliOperator
from qiskit.aqua.operators import LegacyBaseOperator
from qiskit.aqua.components.optimizers import Optimizer
from qiskit.aqua.components.variational_forms import VariationalForm
from qiskit.aqua.utils.validation import validate_min
logger = logging.getLogger(__name__)
[docs]class VQEAdapt(VQAlgorithm):
"""DEPRECATED. The Adaptive VQE algorithm.
See https://arxiv.org/abs/1812.11173
"""
# TODO make re-usable, implement MinimumEignesolver interface
def __init__(self, operator: LegacyBaseOperator,
var_form_base: VariationalForm, optimizer: Optimizer,
initial_point: Optional[np.ndarray] = None,
excitation_pool: Optional[List[WeightedPauliOperator]] = None,
threshold: float = 1e-5,
delta: float = 1,
max_iterations: Optional[int] = None,
max_evals_grouped: int = 1,
aux_operators: Optional[List[LegacyBaseOperator]] = None,
quantum_instance: Optional[
Union[QuantumInstance, Backend, BaseBackend]] = None) -> None:
"""
Args:
operator: Qubit operator
var_form_base: base parameterized variational form
optimizer: the classical optimizer algorithm
initial_point: optimizer initial point
excitation_pool: list of excitation operators
threshold: absolute threshold value for gradients, has a min. value of 1e-15.
delta: finite difference step size for gradient computation,
has a min. value of 1e-5.
max_iterations: maximum number of macro iterations of the VQEAdapt algorithm.
max_evals_grouped: max number of evaluations performed simultaneously
aux_operators: Auxiliary operators to be evaluated at each eigenvalue
quantum_instance: Quantum Instance or Backend
Raises:
ValueError: if var_form_base is not an instance of UCCSD.
See also: qiskit/chemistry/components/variational_forms/uccsd_adapt.py
"""
warnings.warn('The qiskit.chemistry.algorithms.minimum_eigen_solvers.VQEAdapt object is '
'deprecated as of 0.8.0 and will be removed no sooner than 3 months after the'
' release. You should use qiskit.chemistry.algorithms.ground_state_solvers.'
'AdaptVQE instead.', DeprecationWarning, stacklevel=2)
validate_min('threshold', threshold, 1e-15)
validate_min('delta', delta, 1e-5)
super().__init__(var_form=var_form_base,
optimizer=optimizer,
initial_point=initial_point,
quantum_instance=quantum_instance)
self._ret = None # type: Dict
self._optimizer.set_max_evals_grouped(max_evals_grouped)
if initial_point is None:
self._initial_point = var_form_base.preferred_init_points
self._operator = operator
if not isinstance(var_form_base, UCCSD):
raise ValueError("var_form_base has to be an instance of UCCSD.")
self._var_form_base = var_form_base
self._var_form_base.manage_hopping_operators()
self._excitation_pool = self._var_form_base.excitation_pool \
if excitation_pool is None else excitation_pool
self._threshold = threshold
self._delta = delta
self._max_iterations = max_iterations
self._aux_operators = []
if aux_operators is not None:
aux_operators = \
[aux_operators] if not isinstance(aux_operators, list) else aux_operators
for aux_op in aux_operators:
self._aux_operators.append(aux_op)
def _compute_gradients(self, excitation_pool, theta, delta,
var_form, operator, optimizer):
"""
Computes the gradients for all available excitation operators.
Args:
excitation_pool (list): pool of excitation operators
theta (list): list of (up to now) optimal parameters
delta (float): finite difference step size (for gradient computation)
var_form (VariationalForm): current variational form
operator (LegacyBaseOperator): system Hamiltonian
optimizer (Optimizer): classical optimizer algorithm
Returns:
list: List of pairs consisting of gradient and excitation operator.
"""
res = []
# compute gradients for all excitation in operator pool
for exc in excitation_pool:
# push next excitation to variational form
var_form.push_hopping_operator(exc)
# construct auxiliary VQE instance
vqe = VQE(operator, var_form, optimizer)
vqe.quantum_instance = self.quantum_instance
# evaluate energies
parameter_sets = theta + [-delta] + theta + [delta]
energy_results = vqe._energy_evaluation(np.asarray(parameter_sets))
# compute gradient
gradient = (energy_results[0] - energy_results[1]) / (2 * delta)
res.append((np.abs(gradient), exc))
# pop excitation from variational form
var_form.pop_hopping_operator()
return res
def _run(self) -> 'VQEAdaptResult':
"""
Run the algorithm to compute the minimum eigenvalue.
Returns:
dict: Dictionary of results
Raises:
AquaError: wrong setting of operator and backend.
"""
self._ret = {} # TODO should be eliminated
# self._operator = VQE._config_the_best_mode(self, self._operator,
# self._quantum_instance.backend)
self._quantum_instance.circuit_summary = True
threshold_satisfied = False
alternating_sequence = False
max_iterations_exceeded = False
prev_op_indices = []
theta = [] # type: List
max_grad = (0, 0)
iteration = 0
while self._max_iterations is None or iteration < self._max_iterations:
iteration += 1
logger.info('--- Iteration #%s ---', str(iteration))
# compute gradients
cur_grads = self._compute_gradients(self._excitation_pool, theta, self._delta,
self._var_form_base, self._operator,
self._optimizer)
# pick maximum gradient
max_grad_index, max_grad = max(enumerate(cur_grads),
key=lambda item: np.abs(item[1][0]))
# store maximum gradient's index for cycle detection
prev_op_indices.append(max_grad_index)
# log gradients
gradlog = "\nGradients in iteration #{}".format(str(iteration))
gradlog += "\nID: Excitation Operator: Gradient <(*) maximum>"
for i, grad in enumerate(cur_grads):
gradlog += '\n{}: {}: {}'.format(str(i), str(grad[1]), str(grad[0]))
if grad[1] == max_grad[1]:
gradlog += '\t(*)'
logger.info(gradlog)
if np.abs(max_grad[0]) < self._threshold:
logger.info("Adaptive VQE terminated succesfully with a final maximum gradient: %s",
str(np.abs(max_grad[0])))
threshold_satisfied = True
break
# check indices of picked gradients for cycles
if VQEAdapt._check_cyclicity(prev_op_indices):
logger.info("Alternating sequence found. Finishing.")
logger.info("Final maximum gradient: %s", str(np.abs(max_grad[0])))
alternating_sequence = True
break
# add new excitation to self._var_form_base
self._var_form_base.push_hopping_operator(max_grad[1])
theta.append(0.0)
# run VQE on current Ansatz
algorithm = VQE(self._operator, self._var_form_base, self._optimizer,
initial_point=theta)
vqe_result = algorithm.run(self._quantum_instance)
self._ret['opt_params'] = vqe_result.optimal_point
theta = vqe_result.optimal_point.tolist()
else:
# reached maximum number of iterations
max_iterations_exceeded = True
logger.info("Maximum number of iterations reached. Finishing.")
logger.info("Final maximum gradient: %s", str(np.abs(max_grad[0])))
# once finished evaluate auxiliary operators if any
if self._aux_operators is not None and self._aux_operators:
algorithm = VQE(self._operator, self._var_form_base, self._optimizer,
initial_point=theta, aux_operators=self._aux_operators)
vqe_result = algorithm.run(self._quantum_instance)
self._ret['opt_params'] = vqe_result.optimal_point
if threshold_satisfied:
finishing_criterion = 'Threshold converged'
elif alternating_sequence:
finishing_criterion = 'Aborted due to cyclicity'
elif max_iterations_exceeded:
finishing_criterion = 'Maximum number of iterations reached'
else:
raise AquaError('The algorithm finished due to an unforeseen reason!')
# extend VQE returned information with additional outputs
result = VQEAdaptResult()
result.combine(vqe_result)
result.num_iterations = iteration
result.final_max_gradient = max_grad[0]
result.finishing_criterion = finishing_criterion
logger.info('The final energy is: %s', str(result.optimal_value.real))
return result
@staticmethod
def _check_cyclicity(indices: List) -> bool:
"""
Auxiliary function to check for cycles in the indices of the selected excitations.
Returns:
bool: Whether repeating sequences of indices have been detected.
"""
cycle_regex = re.compile(r"(\b.+ .+\b)( \b\1\b)+")
# reg-ex explanation:
# 1. (\b.+ .+\b) will match at least two numbers and try to match as many as possible. The
# word boundaries in the beginning and end ensure that now numbers are split into digits.
# 2. the match of this part is placed into capture group 1
# 3. ( \b\1\b)+ will match a space followed by the contents of capture group 1 (again
# delimited by word boundaries to avoid separation into digits).
# -> this results in any sequence of at least two numbers being detected
match = cycle_regex.search(' '.join(map(str, indices)))
logger.debug('Cycle detected: %s', match)
# Additionally we also need to check whether the last two numbers are identical, because the
# reg-ex above will only find cycles of at least two consecutive numbers.
# It is sufficient to assert that the last two numbers are different due to the iterative
# nature of the algorithm.
return match is not None or (len(indices) > 1 and indices[-2] == indices[-1])
[docs] def get_optimal_cost(self):
if 'opt_params' not in self._ret:
raise AquaError("Cannot return optimal cost before running the "
"algorithm to find optimal params.")
return self._ret['min_val']
[docs] def get_optimal_circuit(self):
if 'opt_params' not in self._ret:
raise AquaError("Cannot find optimal circuit before running the "
"algorithm to find optimal params.")
return self._var_form_base.construct_circuit(self._ret['opt_params'])
[docs] def get_optimal_vector(self):
# pylint: disable=import-outside-toplevel
from qiskit.aqua.utils.run_circuits import find_regs_by_name
if 'opt_params' not in self._ret:
raise AquaError("Cannot find optimal vector before running the "
"algorithm to find optimal params.")
qc = self.get_optimal_circuit()
if self._quantum_instance.is_statevector:
ret = self._quantum_instance.execute(qc)
self._ret['min_vector'] = ret.get_statevector(qc)
else:
c = ClassicalRegister(qc.width(), name='c')
q = find_regs_by_name(qc, 'q')
qc.add_register(c)
qc.barrier(q)
qc.measure(q, c)
tmp_cache = self._quantum_instance.circuit_cache
self._quantum_instance._circuit_cache = None
ret = self._quantum_instance.execute(qc)
self._quantum_instance._circuit_cache = tmp_cache
self._ret['min_vector'] = ret.get_counts(qc)
return self._ret['min_vector']
@property
def optimal_params(self):
if 'opt_params' not in self._ret:
raise AquaError("Cannot find optimal params before running the algorithm.")
return self._ret['opt_params']
class VQEAdaptResult(VQEResult):
""" VQE Result."""
@property
def num_iterations(self) -> int:
""" Returns number of iterations """
return self.get('num_iterations')
@num_iterations.setter
def num_iterations(self, value: int) -> None:
""" Sets number of iterations """
self.data['num_iterations'] = value
@property
def final_max_gradient(self) -> float:
""" Returns final maximum gradient """
return self.get('final_max_gradient')
@final_max_gradient.setter
def final_max_gradient(self, value: float) -> None:
""" Sets final maximum gradient """
self.data['final_max_gradient'] = value
@property
def finishing_criterion(self) -> str:
""" Returns finishing criterion """
return self.get('finishing_criterion')
@finishing_criterion.setter
def finishing_criterion(self, value: str) -> None:
""" Sets finishing criterion """
self.data['finishing_criterion'] = value
def __getitem__(self, key: object) -> object:
if key == 'final_max_grad':
warnings.warn('final_max_grad deprecated, use final_max_gradient property.',
DeprecationWarning)
return super().__getitem__('final_max_gradient')
return super().__getitem__(key)