Source code for qiskit.aqua.operators.evolutions.evolved_op
# This code is part of Qiskit.
#
# (C) Copyright IBM 2020, 2021.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
""" EvolutionOp Class """
from typing import Optional, Union, Set, List, cast
import logging
import numpy as np
import scipy
from qiskit.circuit import ParameterExpression, Instruction
from ..operator_base import OperatorBase
from ..primitive_ops.primitive_op import PrimitiveOp
from ..primitive_ops.matrix_op import MatrixOp
from ..list_ops import ListOp
from ..list_ops.summed_op import SummedOp
from ..list_ops.composed_op import ComposedOp
from ..list_ops.tensored_op import TensoredOp
logger = logging.getLogger(__name__)
[docs]class EvolvedOp(PrimitiveOp):
r"""
Class for wrapping Operator Evolutions for compilation (``convert``) by an EvolutionBase
method later, essentially acting as a placeholder. Note that EvolvedOp is a weird case of
PrimitiveOp. It happens to be that it fits into the PrimitiveOp interface nearly perfectly,
and it essentially represents a placeholder for a PrimitiveOp later, even though it doesn't
actually hold a primitive object. We could have chosen for it to be an OperatorBase,
but would have ended up copying and pasting a lot of code from PrimitiveOp."""
def __init__(self,
primitive: OperatorBase,
coeff: Optional[Union[int, float, complex, ParameterExpression]] = 1.0) -> None:
"""
Args:
primitive: The operator being wrapped to signify evolution later.
coeff: A coefficient multiplying the operator
"""
super().__init__(primitive, coeff=coeff)
[docs] def primitive_strings(self) -> Set[str]:
return self.primitive.primitive_strings() # type: ignore
@property
def num_qubits(self) -> int:
return self.primitive.num_qubits # type: ignore
[docs] def add(self, other: OperatorBase) -> OperatorBase:
if not self.num_qubits == other.num_qubits:
raise ValueError(
'Sum over operators with different numbers of qubits, {} and {}, is not well '
'defined'.format(self.num_qubits, other.num_qubits))
if isinstance(other, EvolvedOp) and self.primitive == other.primitive:
return EvolvedOp(self.primitive, coeff=self.coeff + other.coeff) # type: ignore
if isinstance(other, SummedOp):
op_list = [self] + cast(SummedOp, other).oplist # type: ignore
return SummedOp(op_list) # type: ignore
return SummedOp([self, other])
[docs] def adjoint(self) -> OperatorBase:
return EvolvedOp(self.primitive.adjoint() * -1, coeff=np.conj(self.coeff)) # type: ignore
[docs] def equals(self, other: OperatorBase) -> bool:
if not isinstance(other, EvolvedOp) or not self.coeff == other.coeff:
return False
return self.primitive == other.primitive
[docs] def tensor(self, other: OperatorBase) -> OperatorBase:
if isinstance(other, TensoredOp):
return TensoredOp([self] + other.oplist) # type: ignore
return TensoredOp([self, other])
def _expand_dim(self, num_qubits: int) -> OperatorBase:
from qiskit.aqua.operators import I
return self.tensor(I ^ num_qubits)
[docs] def permute(self, permutation: List[int]) -> OperatorBase:
return EvolvedOp(self.primitive.permute(permutation), coeff=self.coeff) # type: ignore
[docs] def compose(self, other: OperatorBase,
permutation: Optional[List[int]] = None, front: bool = False) -> OperatorBase:
new_self, other = self._expand_shorter_operator_and_permute(other, permutation)
if front:
return other.compose(new_self)
if isinstance(other, ComposedOp):
return ComposedOp([new_self] + other.oplist)
return ComposedOp([new_self, other])
def __str__(self) -> str:
prim_str = str(self.primitive)
if self.coeff == 1.0:
return 'e^(-i*{})'.format(prim_str)
else:
return "{} * e^(-i*{})".format(self.coeff, prim_str)
def __repr__(self) -> str:
return "EvolvedOp({}, coeff={})".format(repr(self.primitive), self.coeff)
[docs] def reduce(self) -> OperatorBase:
return EvolvedOp(self.primitive.reduce(), coeff=self.coeff) # type: ignore
[docs] def assign_parameters(self, param_dict: dict) -> OperatorBase:
param_value = self.coeff
if isinstance(self.coeff, ParameterExpression):
unrolled_dict = self._unroll_param_dict(param_dict)
if isinstance(unrolled_dict, list):
return ListOp([self.assign_parameters(param_dict) for param_dict in unrolled_dict])
if self.coeff.parameters <= set(unrolled_dict.keys()):
binds = {param: unrolled_dict[param] for param in self.coeff.parameters}
param_value = float(self.coeff.bind(binds))
return EvolvedOp(
self.primitive.bind_parameters(param_dict), coeff=param_value) # type: ignore
[docs] def eval(self,
front: Optional[Union[str, dict, np.ndarray,
OperatorBase]] = None) -> Union[OperatorBase, float, complex]:
return cast(Union[OperatorBase, float, complex],
self.to_matrix_op().eval(front=front)) # type: ignore
[docs] def to_matrix(self, # type: ignore
massive: bool = False) -> Union[np.ndarray, List[np.ndarray]]:
if self.primitive.__class__.__name__ == ListOp.__name__:
return \
[op.exp_i().to_matrix(massive=massive) *
self.primitive.coeff * self.coeff # type: ignore
for op in self.primitive.oplist] # type: ignore
prim_mat = -1.j * self.primitive.to_matrix() # type: ignore
# pylint: disable=no-member
return scipy.linalg.expm(prim_mat) * self.coeff
[docs] def to_matrix_op(self, massive: bool = False) -> OperatorBase:
""" Returns a ``MatrixOp`` equivalent to this Operator. """
if self.primitive.__class__.__name__ == ListOp.__name__:
return ListOp(
[op.exp_i().to_matrix_op() for op in self.primitive.oplist], # type: ignore
coeff=self.primitive.coeff * self.coeff) # type: ignore
prim_mat = EvolvedOp(self.primitive).to_matrix(massive=massive) # type: ignore
return MatrixOp(prim_mat, coeff=self.coeff)
[docs] def log_i(self, massive: bool = False) -> OperatorBase:
return self.primitive * self.coeff # type: ignore
# pylint: disable=arguments-differ
[docs] def to_instruction(self, massive: bool = False) -> Instruction:
return self.primitive.to_matrix_op(massive=massive).exp_i() # type: ignore