Source code for qiskit.aqua.algorithms.amplitude_estimators.iqae
# This code is part of Qiskit.
#
# (C) Copyright IBM 2018, 2021.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""The Iterative Quantum Amplitude Estimation Algorithm."""
import warnings
from typing import Optional, Union, List, Tuple, Callable, Dict, Any, cast
import logging
import numpy as np
from scipy.stats import beta
from qiskit import ClassicalRegister, QuantumRegister, QuantumCircuit
from qiskit.providers import BaseBackend
from qiskit.providers import Backend
from qiskit.aqua import QuantumInstance, AquaError
from qiskit.aqua.utils.circuit_factory import CircuitFactory
from qiskit.aqua.utils.validation import validate_range, validate_in_set
from .ae_algorithm import AmplitudeEstimationAlgorithm, AmplitudeEstimationAlgorithmResult
logger = logging.getLogger(__name__)
[docs]class IterativeAmplitudeEstimation(AmplitudeEstimationAlgorithm):
r"""The Iterative Amplitude Estimation algorithm.
This class implements the Iterative Quantum Amplitude Estimation (IQAE) algorithm, proposed
in [1]. The output of the algorithm is an estimate that,
with at least probability :math:`1 - \alpha`, differs by epsilon to the target value, where
both alpha and epsilon can be specified.
It differs from the original QAE algorithm proposed by Brassard [2] in that it does not rely on
Quantum Phase Estimation, but is only based on Grover's algorithm. IQAE iteratively
applies carefully selected Grover iterations to find an estimate for the target amplitude.
References:
[1]: Grinko, D., Gacon, J., Zoufal, C., & Woerner, S. (2019).
Iterative Quantum Amplitude Estimation.
`arXiv:1912.05559 <https://arxiv.org/abs/1912.05559>`_.
[2]: Brassard, G., Hoyer, P., Mosca, M., & Tapp, A. (2000).
Quantum Amplitude Amplification and Estimation.
`arXiv:quant-ph/0005055 <http://arxiv.org/abs/quant-ph/0005055>`_.
"""
def __init__(self, epsilon: float,
alpha: float,
confint_method: str = 'beta',
min_ratio: float = 2,
state_preparation: Optional[Union[QuantumCircuit, CircuitFactory]] = None,
grover_operator: Optional[Union[QuantumCircuit, CircuitFactory]] = None,
objective_qubits: Optional[List[int]] = None,
post_processing: Optional[Callable[[float], float]] = None,
a_factory: Optional[CircuitFactory] = None,
q_factory: Optional[CircuitFactory] = None,
i_objective: Optional[int] = None,
initial_state: Optional[QuantumCircuit] = None,
quantum_instance: Optional[
Union[QuantumInstance, BaseBackend, Backend]] = None) -> None:
r"""
The output of the algorithm is an estimate for the amplitude `a`, that with at least
probability 1 - alpha has an error of epsilon. The number of A operator calls scales
linearly in 1/epsilon (up to a logarithmic factor).
Args:
epsilon: Target precision for estimation target `a`, has values between 0 and 0.5
alpha: Confidence level, the target probability is 1 - alpha, has values between 0 and 1
confint_method: Statistical method used to estimate the confidence intervals in
each iteration, can be 'chernoff' for the Chernoff intervals or 'beta' for the
Clopper-Pearson intervals (default)
min_ratio: Minimal q-ratio (:math:`K_{i+1} / K_i`) for FindNextK
state_preparation: A circuit preparing the input state, referred to as
:math:`\mathcal{A}`.
grover_operator: The Grover operator :math:`\mathcal{Q}` used as unitary in the
phase estimation circuit.
objective_qubits: A list of qubit indices. A measurement outcome is classified as
'good' state if all objective qubits are in state :math:`|1\rangle`, otherwise it
is classified as 'bad'.
post_processing: A mapping applied to the estimate of :math:`0 \leq a \leq 1`,
usually used to map the estimate to a target interval.
a_factory: The A operator, specifying the QAE problem
q_factory: The Q operator (Grover operator), constructed from the
A operator
i_objective: Index of the objective qubit, that marks the 'good/bad' states
initial_state: A state to prepend to the constructed circuits.
quantum_instance: Quantum Instance or Backend
Raises:
AquaError: if the method to compute the confidence intervals is not supported
"""
# validate ranges of input arguments
validate_range('epsilon', epsilon, 0, 0.5)
validate_range('alpha', alpha, 0, 1)
validate_in_set('confint_method', confint_method, {'chernoff', 'beta'})
# support legacy input if passed as positional arguments
if isinstance(state_preparation, CircuitFactory):
a_factory = state_preparation
state_preparation = None
if isinstance(grover_operator, CircuitFactory):
q_factory = grover_operator
grover_operator = None
if isinstance(objective_qubits, int):
i_objective = objective_qubits
objective_qubits = None
super().__init__(state_preparation=state_preparation,
grover_operator=grover_operator,
objective_qubits=objective_qubits,
post_processing=post_processing,
a_factory=a_factory,
q_factory=q_factory,
i_objective=i_objective,
quantum_instance=quantum_instance)
# store parameters
self._epsilon = epsilon
self._alpha = alpha
self._min_ratio = min_ratio
self._confint_method = confint_method
self._initial_state = initial_state
# results dictionary
self._ret = {} # type: Dict[str, Any]
@property
def precision(self) -> float:
"""Returns the target precision `epsilon` of the algorithm.
Returns:
The target precision (which is half the width of the confidence interval).
"""
return self._epsilon
@precision.setter
def precision(self, epsilon: float) -> None:
"""Set the target precision of the algorithm.
Args:
epsilon: Target precision for estimation target `a`.
"""
self._epsilon = epsilon
def _find_next_k(self, k: int, upper_half_circle: bool, theta_interval: Tuple[float, float],
min_ratio: float = 2.0) -> Tuple[int, bool]:
"""Find the largest integer k_next, such that the interval (4 * k_next + 2)*theta_interval
lies completely in [0, pi] or [pi, 2pi], for theta_interval = (theta_lower, theta_upper).
Args:
k: The current power of the Q operator.
upper_half_circle: Boolean flag of whether theta_interval lies in the
upper half-circle [0, pi] or in the lower one [pi, 2pi].
theta_interval: The current confidence interval for the angle theta,
i.e. (theta_lower, theta_upper).
min_ratio: Minimal ratio K/K_next allowed in the algorithm.
Returns:
The next power k, and boolean flag for the extrapolated interval.
Raises:
AquaError: if min_ratio is smaller or equal to 1
"""
if min_ratio <= 1:
raise AquaError('min_ratio must be larger than 1 to ensure convergence')
# initialize variables
theta_l, theta_u = theta_interval
old_scaling = 4 * k + 2 # current scaling factor, called K := (4k + 2)
# the largest feasible scaling factor K cannot be larger than K_max,
# which is bounded by the length of the current confidence interval
max_scaling = int(1 / (2 * (theta_u - theta_l)))
scaling = max_scaling - (max_scaling - 2) % 4 # bring into the form 4 * k_max + 2
# find the largest feasible scaling factor K_next, and thus k_next
while scaling >= min_ratio * old_scaling:
theta_min = scaling * theta_l - int(scaling * theta_l)
theta_max = scaling * theta_u - int(scaling * theta_u)
if theta_min <= theta_max <= 0.5 and theta_min <= 0.5:
# the extrapolated theta interval is in the upper half-circle
upper_half_circle = True
return int((scaling - 2) / 4), upper_half_circle
elif theta_max >= 0.5 and theta_max >= theta_min >= 0.5:
# the extrapolated theta interval is in the upper half-circle
upper_half_circle = False
return int((scaling - 2) / 4), upper_half_circle
scaling -= 4
# if we do not find a feasible k, return the old one
return int(k), upper_half_circle
[docs] def construct_circuit(self, k: int, measurement: bool = False) -> QuantumCircuit:
r"""Construct the circuit Q^k A \|0>.
The A operator is the unitary specifying the QAE problem and Q the associated Grover
operator.
Args:
k: The power of the Q operator.
measurement: Boolean flag to indicate if measurements should be included in the
circuits.
Returns:
The circuit Q^k A \|0>.
"""
if self.state_preparation is not None: # using circuits, not CircuitFactory
num_qubits = max(self.state_preparation.num_qubits, self.grover_operator.num_qubits)
circuit = QuantumCircuit(num_qubits, name='circuit')
if self._initial_state is not None:
circuit.compose(self._initial_state, inplace=True)
# add classical register if needed
if measurement:
c = ClassicalRegister(len(self.objective_qubits))
circuit.add_register(c)
# add A operator
circuit.compose(self.state_preparation, inplace=True)
# add Q^k
if k != 0:
circuit.compose(self.grover_operator.power(k), inplace=True)
else: # deprecated CircuitFactory
q = QuantumRegister(self._a_factory.num_target_qubits, 'q')
circuit = QuantumCircuit(q, name='circuit')
warnings.filterwarnings('ignore', category=DeprecationWarning)
q_factory = self.q_factory
warnings.filterwarnings('always', category=DeprecationWarning)
# get number of ancillas and add register if needed
num_ancillas = np.maximum(self._a_factory.required_ancillas(),
q_factory.required_ancillas())
q_aux = None
# pylint: disable=comparison-with-callable
if num_ancillas > 0:
q_aux = QuantumRegister(num_ancillas, 'aux')
circuit.add_register(q_aux)
# add classical register if needed
if measurement:
c = ClassicalRegister(1)
circuit.add_register(c)
# add A operator
self._a_factory.build(circuit, q, q_aux)
# add Q^k
if k != 0:
q_factory.build_power(circuit, q, k, q_aux)
# add optional measurement
if measurement:
# real hardware can currently not handle operations after measurements, which might
# happen if the circuit gets transpiled, hence we're adding a safeguard-barrier
circuit.barrier()
circuit.measure(self.objective_qubits, *c)
return circuit
def _probability_to_measure_one(self,
counts_or_statevector: Union[dict, List[complex], np.ndarray]
) -> Union[Tuple[int, float], float]:
"""Get the probability to measure '1' in the last qubit.
Args:
counts_or_statevector: Either a counts-dictionary (with one measured qubit only!) or
the statevector returned from the statevector_simulator.
Returns:
If a dict is given, return (#one-counts, #one-counts/#all-counts),
otherwise Pr(measure '1' in the last qubit).
"""
if self.state_preparation is not None:
num_qubits = self.state_preparation.num_qubits - self.state_preparation.num_ancillas
else:
num_qubits = self._a_factory.num_target_qubits
if isinstance(counts_or_statevector, dict):
one_counts = counts_or_statevector.get('1' * len(self.objective_qubits), 0)
return int(one_counts), one_counts / sum(counts_or_statevector.values())
else:
statevector = counts_or_statevector
# sum over all amplitudes where the objective qubit is 1
prob = 0
for i, amplitude in enumerate(statevector):
bitstr = ('{:0%db}' % num_qubits).format(i)[::-1]
if self.is_good_state(bitstr):
prob = prob + np.abs(amplitude)**2
return prob
def _chernoff_confint(self, value: float, shots: int, max_rounds: int, alpha: float
) -> Tuple[float, float]:
"""Compute the Chernoff confidence interval for `shots` i.i.d. Bernoulli trials.
The confidence interval is
[value - eps, value + eps], where eps = sqrt(3 * log(2 * max_rounds/ alpha) / shots)
but at most [0, 1].
Args:
value: The current estimate.
shots: The number of shots.
max_rounds: The maximum number of rounds, used to compute epsilon_a.
alpha: The confidence level, used to compute epsilon_a.
Returns:
The Chernoff confidence interval.
"""
eps = np.sqrt(3 * np.log(2 * max_rounds / alpha) / shots)
lower = np.maximum(0, value - eps)
upper = np.minimum(1, value + eps)
return lower, upper
def _clopper_pearson_confint(self, counts: int, shots: int, alpha: float
) -> Tuple[float, float]:
"""Compute the Clopper-Pearson confidence interval for `shots` i.i.d. Bernoulli trials.
Args:
counts: The number of positive counts.
shots: The number of shots.
alpha: The confidence level for the confidence interval.
Returns:
The Clopper-Pearson confidence interval.
"""
lower, upper = 0, 1
# if counts == 0, the beta quantile returns nan
if counts != 0:
lower = beta.ppf(alpha / 2, counts, shots - counts + 1)
# if counts == shots, the beta quantile returns nan
if counts != shots:
upper = beta.ppf(1 - alpha / 2, counts + 1, shots - counts)
return lower, upper
def _run(self) -> 'IterativeAmplitudeEstimationResult':
# check if A factory or state_preparation has been set
if self.state_preparation is None:
if self._a_factory is None: # getter emits deprecation warnings, therefore nest
raise AquaError('Either the state_preparation variable or the a_factory '
'(deprecated) must be set to run the algorithm.')
# initialize memory variables
powers = [0] # list of powers k: Q^k, (called 'k' in paper)
ratios = [] # list of multiplication factors (called 'q' in paper)
theta_intervals = [[0, 1 / 4]] # a priori knowledge of theta / 2 / pi
a_intervals = [[0.0, 1.0]] # a priori knowledge of the confidence interval of the estimate
num_oracle_queries = 0
num_one_shots = []
# maximum number of rounds
max_rounds = int(np.log(self._min_ratio * np.pi / 8
/ self._epsilon) / np.log(self._min_ratio)) + 1
upper_half_circle = True # initially theta is in the upper half-circle
# for statevector we can directly return the probability to measure 1
# note, that no iterations here are necessary
if self._quantum_instance.is_statevector:
# simulate circuit
circuit = self.construct_circuit(k=0, measurement=False)
ret = self._quantum_instance.execute(circuit)
# get statevector
statevector = ret.get_statevector(circuit)
# calculate the probability of measuring '1'
prob = self._probability_to_measure_one(statevector)
prob = cast(float, prob) # tell MyPy it's a float and not Tuple[int, float ]
a_confidence_interval = [prob, prob] # type: List[float]
a_intervals.append(a_confidence_interval)
theta_i_interval = [np.arccos(1 - 2 * a_i) / 2 / np.pi # type: ignore
for a_i in a_confidence_interval]
theta_intervals.append(theta_i_interval)
num_oracle_queries = 0 # no Q-oracle call, only a single one to A
else:
num_iterations = 0 # keep track of the number of iterations
shots = self._quantum_instance._run_config.shots # number of shots per iteration
# do while loop, keep in mind that we scaled theta mod 2pi such that it lies in [0,1]
while theta_intervals[-1][1] - theta_intervals[-1][0] > self._epsilon / np.pi:
num_iterations += 1
# get the next k
k, upper_half_circle = self._find_next_k(powers[-1], upper_half_circle,
theta_intervals[-1], # type: ignore
min_ratio=self._min_ratio)
# store the variables
powers.append(k)
ratios.append((2 * powers[-1] + 1) / (2 * powers[-2] + 1))
# run measurements for Q^k A|0> circuit
circuit = self.construct_circuit(k, measurement=True)
ret = self._quantum_instance.execute(circuit)
# get the counts and store them
counts = ret.get_counts(circuit)
# calculate the probability of measuring '1', 'prob' is a_i in the paper
one_counts, prob = self._probability_to_measure_one(counts) # type: ignore
num_one_shots.append(one_counts)
# track number of Q-oracle calls
num_oracle_queries += shots * k
# if on the previous iterations we have K_{i-1} == K_i, we sum these samples up
j = 1 # number of times we stayed fixed at the same K
round_shots = shots
round_one_counts = one_counts
if num_iterations > 1:
while powers[num_iterations - j] == powers[num_iterations] \
and num_iterations >= j + 1:
j = j + 1
round_shots += shots
round_one_counts += num_one_shots[-j]
# compute a_min_i, a_max_i
if self._confint_method == 'chernoff':
a_i_min, a_i_max = self._chernoff_confint(prob, round_shots, max_rounds,
self._alpha)
else: # 'beta'
a_i_min, a_i_max = self._clopper_pearson_confint(round_one_counts, round_shots,
self._alpha / max_rounds)
# compute theta_min_i, theta_max_i
if upper_half_circle:
theta_min_i = np.arccos(1 - 2 * a_i_min) / 2 / np.pi
theta_max_i = np.arccos(1 - 2 * a_i_max) / 2 / np.pi
else:
theta_min_i = 1 - np.arccos(1 - 2 * a_i_max) / 2 / np.pi
theta_max_i = 1 - np.arccos(1 - 2 * a_i_min) / 2 / np.pi
# compute theta_u, theta_l of this iteration
scaling = 4 * k + 2 # current K_i factor
theta_u = (int(scaling * theta_intervals[-1][1]) + theta_max_i) / scaling
theta_l = (int(scaling * theta_intervals[-1][0]) + theta_min_i) / scaling
theta_intervals.append([theta_l, theta_u])
# compute a_u_i, a_l_i
a_u = np.sin(2 * np.pi * theta_u)**2
a_l = np.sin(2 * np.pi * theta_l)**2
a_u = cast(float, a_u)
a_l = cast(float, a_l)
a_intervals.append([a_l, a_u])
# get the latest confidence interval for the estimate of a
a_confidence_interval = a_intervals[-1]
# the final estimate is the mean of the confidence interval
value = np.mean(a_confidence_interval)
# transform to estimate
estimation = self.post_processing(value) # type: ignore
confidence_interval = [self.post_processing(x) for x in a_confidence_interval]
# add result items to the results dictionary
self._ret = {
'value': value,
'value_confidence_interval': a_confidence_interval,
'confidence_interval': confidence_interval,
'estimation': estimation,
'alpha': self._alpha,
'actual_epsilon': (confidence_interval[1] - confidence_interval[0]) / 2,
'num_oracle_queries': num_oracle_queries,
'a_intervals': a_intervals,
'theta_intervals': theta_intervals,
'powers': powers,
'ratios': ratios,
}
ae_result = AmplitudeEstimationAlgorithmResult()
ae_result.value = self._ret['value']
ae_result.estimation = self._ret['estimation']
ae_result.num_oracle_queries = self._ret['num_oracle_queries']
ae_result.confidence_interval = self._ret['confidence_interval']
result = IterativeAmplitudeEstimationResult()
result.combine(ae_result)
result.value_confidence_interval = self._ret['value_confidence_interval']
result.alpha = self._ret['alpha']
result.actual_epsilon = self._ret['actual_epsilon']
result.a_intervals = self._ret['a_intervals']
result.theta_intervals = self._ret['theta_intervals']
result.powers = self._ret['powers']
result.ratios = self._ret['ratios']
return result
[docs]class IterativeAmplitudeEstimationResult(AmplitudeEstimationAlgorithmResult):
""" IterativeAmplitudeEstimation Result."""
@property
def value_confidence_interval(self) -> List[float]:
""" return value_confidence_interval """
return self.get('value_confidence_interval')
@value_confidence_interval.setter
def value_confidence_interval(self, value: List[float]) -> None:
""" set value_confidence_interval """
self.data['value_confidence_interval'] = value
@property
def alpha(self) -> float:
""" return alpha """
return self.get('alpha')
@alpha.setter
def alpha(self, value: float) -> None:
""" set alpha """
self.data['alpha'] = value
@property
def actual_epsilon(self) -> float:
""" return mle """
return self.get('actual_epsilon')
@actual_epsilon.setter
def actual_epsilon(self, value: float) -> None:
""" set mle """
self.data['actual_epsilon'] = value
@property
def a_intervals(self) -> List[List[float]]:
""" return a_intervals """
return self.get('a_intervals')
@a_intervals.setter
def a_intervals(self, value: List[List[float]]) -> None:
""" set a_intervals """
self.data['a_intervals'] = value
@property
def theta_intervals(self) -> List[List[float]]:
""" return theta_intervals """
return self.get('theta_intervals')
@theta_intervals.setter
def theta_intervals(self, value: List[List[float]]) -> None:
""" set theta_intervals """
self.data['theta_intervals'] = value
@property
def powers(self) -> List[int]:
""" return powers """
return self.get('powers')
@powers.setter
def powers(self, value: List[int]) -> None:
""" set powers """
self.data['powers'] = value
@property
def ratios(self) -> List[float]:
""" return ratios """
return self.get('ratios')
@ratios.setter
def ratios(self, value: List[float]) -> None:
""" set ratios """
self.data['ratios'] = value
[docs] @staticmethod
def from_dict(a_dict: Dict) -> 'IterativeAmplitudeEstimationResult':
""" create new object from a dictionary """
return IterativeAmplitudeEstimationResult(a_dict)