Source code for qiskit.algorithms.minimum_eigen_solvers.vqe
# This code is part of Qiskit.
#
# (C) Copyright IBM 2018, 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""The Variational Quantum Eigensolver algorithm.
See https://arxiv.org/abs/1304.3061
"""
from typing import Optional, List, Callable, Union, Dict, Tuple
import logging
import warnings
from time import time
import numpy as np
from qiskit.circuit import QuantumCircuit, Parameter
from qiskit.circuit.library import RealAmplitudes
from qiskit.providers import BaseBackend
from qiskit.providers import Backend
from qiskit.opflow import (
OperatorBase,
ExpectationBase,
ExpectationFactory,
StateFn,
CircuitStateFn,
ListOp,
I,
CircuitSampler,
)
from qiskit.opflow.gradients import GradientBase
from qiskit.utils.validation import validate_min
from qiskit.utils.backend_utils import is_aer_provider
from qiskit.utils.deprecation import deprecate_function
from qiskit.utils import QuantumInstance, algorithm_globals
from ..optimizers import Optimizer, SLSQP
from ..variational_algorithm import VariationalAlgorithm, VariationalResult
from .minimum_eigen_solver import MinimumEigensolver, MinimumEigensolverResult
from ..exceptions import AlgorithmError
logger = logging.getLogger(__name__)
# disable check for ansatzes, optimizer setter because of pylint bug
# pylint: disable=no-member
[docs]class VQE(VariationalAlgorithm, MinimumEigensolver):
r"""The Variational Quantum Eigensolver algorithm.
`VQE <https://arxiv.org/abs/1304.3061>`__ is a quantum algorithm that uses a
variational technique to find
the minimum eigenvalue of the Hamiltonian :math:`H` of a given system.
An instance of VQE requires defining two algorithmic sub-components:
a trial state (a.k.a. ansatz) which is a :class:`QuantumCircuit`, and one of the classical
:mod:`~qiskit.algorithms.optimizers`. The ansatz is varied, via its set of parameters, by the
optimizer, such that it works towards a state, as determined by the parameters applied to the
ansatz, that will result in the minimum expectation value being measured of the input operator
(Hamiltonian).
An optional array of parameter values, via the *initial_point*, may be provided as the
starting point for the search of the minimum eigenvalue. This feature is particularly useful
such as when there are reasons to believe that the solution point is close to a particular
point. As an example, when building the dissociation profile of a molecule,
it is likely that using the previous computed optimal solution as the starting
initial point for the next interatomic distance is going to reduce the number of iterations
necessary for the variational algorithm to converge. It provides an
`initial point tutorial <https://github.com/Qiskit/qiskit-tutorials-community/blob/master
/chemistry/h2_vqe_initial_point.ipynb>`__ detailing this use case.
The length of the *initial_point* list value must match the number of the parameters
expected by the ansatz being used. If the *initial_point* is left at the default
of ``None``, then VQE will look to the ansatz for a preferred value, based on its
given initial state. If the ansatz returns ``None``,
then a random point will be generated within the parameter bounds set, as per above.
If the ansatz provides ``None`` as the lower bound, then VQE
will default it to :math:`-2\pi`; similarly, if the ansatz returns ``None``
as the upper bound, the default value will be :math:`2\pi`.
"""
def __init__(
self,
ansatz: Optional[QuantumCircuit] = None,
optimizer: Optional[Optimizer] = None,
initial_point: Optional[np.ndarray] = None,
gradient: Optional[Union[GradientBase, Callable]] = None,
expectation: Optional[ExpectationBase] = None,
include_custom: bool = False,
max_evals_grouped: int = 1,
callback: Optional[Callable[[int, np.ndarray, float, float], None]] = None,
quantum_instance: Optional[Union[QuantumInstance, BaseBackend, Backend]] = None,
sort_parameters_by_name: Optional[bool] = None,
) -> None:
"""
Args:
ansatz: A parameterized circuit used as Ansatz for the wave function.
optimizer: A classical optimizer.
initial_point: An optional initial point (i.e. initial parameter values)
for the optimizer. If ``None`` then VQE will look to the ansatz for a preferred
point and if not will simply compute a random one.
gradient: An optional gradient function or operator for optimizer.
expectation: The Expectation converter for taking the average value of the
Observable over the ansatz state function. When ``None`` (the default) an
:class:`~qiskit.opflow.expectations.ExpectationFactory` is used to select
an appropriate expectation based on the operator and backend. When using Aer
qasm_simulator backend, with paulis, it is however much faster to leverage custom
Aer function for the computation but, although VQE performs much faster
with it, the outcome is ideal, with no shot noise, like using a state vector
simulator. If you are just looking for the quickest performance when choosing Aer
qasm_simulator and the lack of shot noise is not an issue then set `include_custom`
parameter here to ``True`` (defaults to ``False``).
include_custom: When `expectation` parameter here is None setting this to ``True`` will
allow the factory to include the custom Aer pauli expectation.
max_evals_grouped: Max number of evaluations performed simultaneously. Signals the
given optimizer that more than one set of parameters can be supplied so that
potentially the expectation values can be computed in parallel. Typically this is
possible when a finite difference gradient is used by the optimizer such that
multiple points to compute the gradient can be passed and if computed in parallel
improve overall execution time. Deprecated if a gradient operator or function is
given.
callback: a callback that can access the intermediate data during the optimization.
Four parameter values are passed to the callback as follows during each evaluation
by the optimizer for its current set of parameters as it works towards the minimum.
These are: the evaluation count, the optimizer parameters for the
ansatz, the evaluated mean and the evaluated standard deviation.`
quantum_instance: Quantum Instance or Backend
sort_parameters_by_name: Deprecated. If True, the initial point is bound to the ansatz
parameters strictly sorted by name instead of the default circuit order. That means
that the ansatz parameters are e.g. sorted as ``x[0] x[1] x[10] x[2] ...`` instead
of ``x[0] x[1] x[2] ... x[10]``. Set this to ``True`` to obtain the behavior prior
to Qiskit Terra 0.18.0.
"""
validate_min("max_evals_grouped", max_evals_grouped, 1)
if sort_parameters_by_name is not None:
warnings.warn(
"The ``sort_parameters_by_name`` attribute is deprecated and will be "
"removed no sooner than 3 months after the release date of Qiskit Terra "
"0.18.0.",
DeprecationWarning,
stacklevel=2,
)
if ansatz is None:
ansatz = RealAmplitudes()
if optimizer is None:
optimizer = SLSQP()
if quantum_instance is not None:
if not isinstance(quantum_instance, QuantumInstance):
quantum_instance = QuantumInstance(quantum_instance)
super().__init__()
self._max_evals_grouped = max_evals_grouped
self._circuit_sampler = None # type: Optional[CircuitSampler]
self._expectation = expectation
self._include_custom = include_custom
# set ansatz -- still supporting pre 0.18.0 sorting
self._sort_parameters_by_name = sort_parameters_by_name
self._ansatz_params = None
self._ansatz = None
self.ansatz = ansatz
self._optimizer = optimizer
self._initial_point = initial_point
self._gradient = gradient
self._quantum_instance = None
if quantum_instance is not None:
self.quantum_instance = quantum_instance
self._eval_time = None
self._eval_count = 0
self._optimizer.set_max_evals_grouped(max_evals_grouped)
self._callback = callback
logger.info(self.print_settings())
# TODO remove this once the stateful methods are deleted
self._ret = None
@property
def ansatz(self) -> Optional[QuantumCircuit]:
"""Returns the ansatz."""
return self._ansatz
@ansatz.setter
def ansatz(self, ansatz: Optional[QuantumCircuit]):
"""Sets the ansatz.
Args:
ansatz: The parameterized circuit used as an ansatz.
"""
self._ansatz = ansatz
if ansatz is not None:
if self._sort_parameters_by_name:
self._ansatz_params = sorted(ansatz.parameters, key=lambda p: p.name)
else:
self._ansatz_params = list(ansatz.parameters)
@property
def gradient(self) -> Optional[Union[GradientBase, Callable]]:
"""Returns the gradient."""
return self._gradient
@gradient.setter
def gradient(self, gradient: Optional[Union[GradientBase, Callable]]):
"""Sets the gradient."""
self._gradient = gradient
@property
def quantum_instance(self) -> Optional[QuantumInstance]:
"""Returns quantum instance."""
return self._quantum_instance
@quantum_instance.setter
def quantum_instance(
self, quantum_instance: Union[QuantumInstance, BaseBackend, Backend]
) -> None:
"""set quantum_instance"""
if not isinstance(quantum_instance, QuantumInstance):
quantum_instance = QuantumInstance(quantum_instance)
self._quantum_instance = quantum_instance
self._circuit_sampler = CircuitSampler(
quantum_instance, param_qobj=is_aer_provider(quantum_instance.backend)
)
@property
def initial_point(self) -> Optional[np.ndarray]:
"""Returns initial point"""
return self._initial_point
@initial_point.setter
def initial_point(self, initial_point: np.ndarray):
"""Sets initial point"""
self._initial_point = initial_point
@property
def expectation(self) -> Optional[ExpectationBase]:
"""The expectation value algorithm used to construct the expectation measurement from
the observable."""
return self._expectation
@expectation.setter
def expectation(self, exp: Optional[ExpectationBase]) -> None:
self._expectation = exp
def _check_operator_ansatz(self, operator: OperatorBase):
"""Check that the number of qubits of operator and ansatz match."""
if operator is not None and self.ansatz is not None:
if operator.num_qubits != self.ansatz.num_qubits:
# try to set the number of qubits on the ansatz, if possible
try:
self.ansatz.num_qubits = operator.num_qubits
self._ansatz_params = sorted(self.ansatz.parameters, key=lambda p: p.name)
except AttributeError as ex:
raise AlgorithmError(
"The number of qubits of the ansatz does not match the "
"operator, and the ansatz does not allow setting the "
"number of qubits using `num_qubits`."
) from ex
@property
def optimizer(self) -> Optional[Optimizer]:
"""Returns optimizer"""
return self._optimizer
@optimizer.setter
def optimizer(self, optimizer: Optimizer):
"""Sets optimizer"""
self._optimizer = optimizer
if optimizer is not None:
optimizer.set_max_evals_grouped(self._max_evals_grouped)
@property
def setting(self):
"""Prepare the setting of VQE as a string."""
ret = f"Algorithm: {self.__class__.__name__}\n"
params = ""
for key, value in self.__dict__.items():
if key[0] == "_":
if "initial_point" in key and value is None:
params += "-- {}: {}\n".format(key[1:], "Random seed")
else:
params += f"-- {key[1:]}: {value}\n"
ret += f"{params}"
return ret
[docs] def print_settings(self):
"""
Preparing the setting of VQE into a string.
Returns:
str: the formatted setting of VQE
"""
ret = "\n"
ret += "==================== Setting of {} ============================\n".format(
self.__class__.__name__
)
ret += f"{self.setting}"
ret += "===============================================================\n"
if self.ansatz is not None:
ret += "{}".format(self.ansatz.draw(output="text"))
else:
ret += "ansatz has not been set"
ret += "===============================================================\n"
ret += f"{self._optimizer.setting}"
ret += "===============================================================\n"
return ret
[docs] def construct_expectation(
self,
parameter: Union[List[float], List[Parameter], np.ndarray],
operator: OperatorBase,
return_expectation: bool = False,
) -> Union[OperatorBase, Tuple[OperatorBase, ExpectationBase]]:
r"""
Generate the ansatz circuit and expectation value measurement, and return their
runnable composition.
Args:
parameter: Parameters for the ansatz circuit.
operator: Qubit operator of the Observable
return_expectation: If True, return the ``ExpectationBase`` expectation converter used
in the construction of the expectation value. Useful e.g. to compute the standard
deviation of the expectation value.
Returns:
The Operator equalling the measurement of the ansatz :class:`StateFn` by the
Observable's expectation :class:`StateFn`, and, optionally, the expectation converter.
Raises:
AlgorithmError: If no operator has been provided.
AlgorithmError: If no expectation is passed and None could be inferred via the
ExpectationFactory.
"""
if operator is None:
raise AlgorithmError("The operator was never provided.")
self._check_operator_ansatz(operator)
# if expectation was never created, try to create one
if self.expectation is None:
expectation = ExpectationFactory.build(
operator=operator,
backend=self.quantum_instance,
include_custom=self._include_custom,
)
else:
expectation = self.expectation
param_dict = dict(zip(self._ansatz_params, parameter)) # type: Dict
wave_function = self.ansatz.assign_parameters(param_dict)
observable_meas = expectation.convert(StateFn(operator, is_measurement=True))
ansatz_circuit_op = CircuitStateFn(wave_function)
expect_op = observable_meas.compose(ansatz_circuit_op).reduce()
if return_expectation:
return expect_op, expectation
return expect_op
[docs] def construct_circuit(
self,
parameter: Union[List[float], List[Parameter], np.ndarray],
operator: OperatorBase,
) -> List[QuantumCircuit]:
"""Return the circuits used to compute the expectation value.
Args:
parameter: Parameters for the ansatz circuit.
operator: Qubit operator of the Observable
Returns:
A list of the circuits used to compute the expectation value.
"""
expect_op = self.construct_expectation(parameter, operator).to_circuit_op()
circuits = []
# recursively extract circuits
def extract_circuits(op):
if isinstance(op, CircuitStateFn):
circuits.append(op.primitive)
elif isinstance(op, ListOp):
for op_i in op.oplist:
extract_circuits(op_i)
extract_circuits(expect_op)
return circuits
def _eval_aux_ops(
self,
parameters: np.ndarray,
aux_operators: List[OperatorBase],
expectation: ExpectationBase,
threshold: float = 1e-12,
) -> np.ndarray:
# Create new CircuitSampler to avoid breaking existing one's caches.
sampler = CircuitSampler(self.quantum_instance)
aux_op_meas = expectation.convert(StateFn(ListOp(aux_operators), is_measurement=True))
aux_op_expect = aux_op_meas.compose(CircuitStateFn(self.ansatz.bind_parameters(parameters)))
values = np.real(sampler.convert(aux_op_expect).eval())
# Discard values below threshold
aux_op_results = values * (np.abs(values) > threshold)
# Deal with the aux_op behavior where there can be Nones or Zero qubit Paulis in the list
_aux_op_nones = [op is None for op in aux_operators]
aux_operator_eigenvalues = [
None if is_none else [result]
for (is_none, result) in zip(_aux_op_nones, aux_op_results)
]
# As this has mixed types, since it can included None, it needs to explicitly pass object
# data type to avoid numpy 1.19 warning message about implicit conversion being deprecated
aux_operator_eigenvalues = np.array([aux_operator_eigenvalues], dtype=object)
return aux_operator_eigenvalues
[docs] def compute_minimum_eigenvalue(
self, operator: OperatorBase, aux_operators: Optional[List[Optional[OperatorBase]]] = None
) -> MinimumEigensolverResult:
super().compute_minimum_eigenvalue(operator, aux_operators)
if self.quantum_instance is None:
raise AlgorithmError(
"A QuantumInstance or Backend must be supplied to run the quantum algorithm."
)
self.quantum_instance.circuit_summary = True
# this sets the size of the ansatz, so it must be called before the initial point
# validation
self._check_operator_ansatz(operator)
# set an expectation for this algorithm run (will be reset to None at the end)
initial_point = _validate_initial_point(self.initial_point, self.ansatz)
bounds = _validate_bounds(self.ansatz)
# We need to handle the array entries being Optional i.e. having value None
if aux_operators:
zero_op = I.tensorpower(operator.num_qubits) * 0.0
converted = []
for op in aux_operators:
if op is None:
converted.append(zero_op)
else:
converted.append(op)
# For some reason Chemistry passes aux_ops with 0 qubits and paulis sometimes.
aux_operators = [zero_op if op == 0 else op for op in converted]
else:
aux_operators = None
# Convert the gradient operator into a callable function that is compatible with the
# optimization routine.
if isinstance(self._gradient, GradientBase):
gradient = self._gradient.gradient_wrapper(
~StateFn(operator) @ StateFn(self._ansatz),
bind_params=self._ansatz_params,
backend=self._quantum_instance,
)
else:
gradient = self._gradient
self._eval_count = 0
energy_evaluation, expectation = self.get_energy_evaluation(
operator, return_expectation=True
)
start_time = time()
opt_params, opt_value, nfev = self.optimizer.optimize(
num_vars=len(initial_point),
objective_function=energy_evaluation,
gradient_function=gradient,
variable_bounds=bounds,
initial_point=initial_point,
)
eval_time = time() - start_time
result = VQEResult()
result.optimal_point = opt_params
result.optimal_parameters = dict(zip(self._ansatz_params, opt_params))
result.optimal_value = opt_value
result.cost_function_evals = nfev
result.optimizer_time = eval_time
result.eigenvalue = opt_value + 0j
result.eigenstate = self._get_eigenstate(result.optimal_parameters)
logger.info(
"Optimization complete in %s seconds.\nFound opt_params %s in %s evals",
eval_time,
result.optimal_point,
self._eval_count,
)
# TODO delete as soon as get_optimal_vector etc are removed
self._ret = result
if aux_operators is not None:
aux_values = self._eval_aux_ops(opt_params, aux_operators, expectation=expectation)
result.aux_operator_eigenvalues = aux_values[0]
return result
[docs] def get_energy_evaluation(
self,
operator: OperatorBase,
return_expectation: bool = False,
) -> Callable[[np.ndarray], Union[float, List[float]]]:
"""Returns a function handle to evaluates the energy at given parameters for the ansatz.
This is the objective function to be passed to the optimizer that is used for evaluation.
Args:
operator: The operator whose energy to evaluate.
return_expectation: If True, return the ``ExpectationBase`` expectation converter used
in the construction of the expectation value. Useful e.g. to evaluate other
operators with the same expectation value converter.
Returns:
Energy of the hamiltonian of each parameter, and, optionally, the expectation
converter.
Raises:
RuntimeError: If the circuit is not parameterized (i.e. has 0 free parameters).
"""
num_parameters = self.ansatz.num_parameters
if num_parameters == 0:
raise RuntimeError("The ansatz must be parameterized, but has 0 free parameters.")
expect_op, expectation = self.construct_expectation(
self._ansatz_params, operator, return_expectation=True
)
def energy_evaluation(parameters):
parameter_sets = np.reshape(parameters, (-1, num_parameters))
# Create dict associating each parameter with the lists of parameterization values for it
param_bindings = dict(zip(self._ansatz_params, parameter_sets.transpose().tolist()))
start_time = time()
sampled_expect_op = self._circuit_sampler.convert(expect_op, params=param_bindings)
means = np.real(sampled_expect_op.eval())
if self._callback is not None:
variance = np.real(expectation.compute_variance(sampled_expect_op))
estimator_error = np.sqrt(variance / self.quantum_instance.run_config.shots)
for i, param_set in enumerate(parameter_sets):
self._eval_count += 1
self._callback(self._eval_count, param_set, means[i], estimator_error[i])
else:
self._eval_count += len(means)
end_time = time()
logger.info(
"Energy evaluation returned %s - %.5f (ms), eval count: %s",
means,
(end_time - start_time) * 1000,
self._eval_count,
)
return means if len(means) > 1 else means[0]
if return_expectation:
return energy_evaluation, expectation
return energy_evaluation
[docs] @deprecate_function(
"""
The VQE.get_optimal_cost method is deprecated as of Qiskit Terra 0.18.0
and will be removed no sooner than 3 months after the releasedate.
This information is part of the returned result object and can be
queried as VQEResult.eigenvalue."""
)
def get_optimal_cost(self) -> float:
"""Get the minimal cost or energy found by the VQE."""
if self._ret.optimal_point is None:
raise AlgorithmError(
"Cannot return optimal cost before running the " "algorithm to find optimal params."
)
return self._ret.optimal_value
[docs] @deprecate_function(
"""
The VQE.get_optimal_circuit method is deprecated as of Qiskit Terra
0.18.0 and will be removed no sooner than 3 months after the releasedate.
This information is part of the returned result object and can be
queried as VQEResult.ansatz.bind_parameters(VQEResult.optimal_point)."""
)
def get_optimal_circuit(self) -> QuantumCircuit:
"""Get the circuit with the optimal parameters."""
if self._ret.optimal_point is None:
raise AlgorithmError(
"Cannot find optimal circuit before running the "
"algorithm to find optimal params."
)
return self.ansatz.assign_parameters(self._ret.optimal_parameters)
[docs] @deprecate_function(
"""
The VQE.get_optimal_vector method is deprecated as of Qiskit Terra 0.18.0
and will be removed no sooner than 3 months after the releasedate.
This information is part of the returned result object and can be
queried as VQEResult.eigenvector."""
)
def get_optimal_vector(self) -> Union[List[float], Dict[str, int]]:
"""Get the simulation outcome of the optimal circuit."""
if self._ret.optimal_parameters is None:
raise AlgorithmError(
"Cannot find optimal circuit before running the "
"algorithm to find optimal vector."
)
return self._get_eigenstate(self._ret.optimal_parameters)
def _get_eigenstate(self, optimal_parameters) -> Union[List[float], Dict[str, int]]:
"""Get the simulation outcome of the ansatz, provided with parameters."""
optimal_circuit = self.ansatz.bind_parameters(optimal_parameters)
state_fn = self._circuit_sampler.convert(StateFn(optimal_circuit)).eval()
if self.quantum_instance.is_statevector:
state = state_fn.primitive.data # VectorStateFn -> Statevector -> np.array
else:
state = state_fn.to_dict_fn().primitive # SparseVectorStateFn -> DictStateFn -> dict
return state
@property
@deprecate_function(
"""
The VQE.optimal_params property is deprecated as of Qiskit Terra 0.18.0
and will be removed no sooner than 3 months after the releasedate.
This information is part of the returned result object and can be
queried as VQEResult.optimal_point."""
)
def optimal_params(self) -> np.ndarray:
"""The optimal parameters for the ansatz."""
if self._ret.optimal_point is None:
raise AlgorithmError("Cannot find optimal params before running the algorithm.")
return self._ret.optimal_point
class VQEResult(VariationalResult, MinimumEigensolverResult):
"""VQE Result."""
def __init__(self) -> None:
super().__init__()
self._cost_function_evals = None
@property
def cost_function_evals(self) -> Optional[int]:
"""Returns number of cost optimizer evaluations"""
return self._cost_function_evals
@cost_function_evals.setter
def cost_function_evals(self, value: int) -> None:
"""Sets number of cost function evaluations"""
self._cost_function_evals = value
@property
def eigenstate(self) -> Optional[np.ndarray]:
"""return eigen state"""
return self._eigenstate
@eigenstate.setter
def eigenstate(self, value: np.ndarray) -> None:
"""set eigen state"""
self._eigenstate = value
def _validate_initial_point(point, ansatz):
expected_size = ansatz.num_parameters
# try getting the initial point from the ansatz
if point is None and hasattr(ansatz, "preferred_init_points"):
point = ansatz.preferred_init_points
# if the point is None choose a random initial point
if point is None:
# get bounds if ansatz has them set, otherwise use [-2pi, 2pi] for each parameter
bounds = getattr(ansatz, "parameter_bounds", None)
if bounds is None:
bounds = [(-2 * np.pi, 2 * np.pi)] * expected_size
# replace all Nones by [-2pi, 2pi]
lower_bounds = []
upper_bounds = []
for lower, upper in bounds:
lower_bounds.append(lower if lower is not None else -2 * np.pi)
upper_bounds.append(upper if upper is not None else 2 * np.pi)
# sample from within bounds
point = algorithm_globals.random.uniform(lower_bounds, upper_bounds)
elif len(point) != expected_size:
raise ValueError(
f"The dimension of the initial point ({len(point)}) does not match the "
f"number of parameters in the circuit ({expected_size})."
)
return point
def _validate_bounds(ansatz):
if hasattr(ansatz, "parameter_bounds") and ansatz.parameter_bounds is not None:
bounds = ansatz.parameter_bounds
if len(bounds) != ansatz.num_parameters:
raise ValueError(
f"The number of bounds ({len(bounds)}) does not match the number of "
f"parameters in the circuit ({ansatz.num_parameters})."
)
else:
bounds = [(None, None)] * ansatz.num_parameters
return bounds