qiskit.quantum_info.Stinespring¶
-
class
Stinespring
(data, input_dims=None, output_dims=None)[source]¶ Stinespring representation of a quantum channel.
The Stinespring representation of a quantum channel \(\mathcal{E}\) is a rectangular matrix \(A\) such that the evolution of a
DensityMatrix
\(\rho\) is given by\[\mathcal{E}(ρ) = \mbox{Tr}_2\left[A ρ A^\dagger\right]\]where \(\mbox{Tr}_2\) is the
partial_trace()
over subsystem 2.A general operator map \(\mathcal{G}\) can also be written using the generalized Stinespring representation which is given by two matrices \(A\), \(B\) such that
\[\mathcal{G}(ρ) = \mbox{Tr}_2\left[A ρ B^\dagger\right]\]See reference [1] for further details.
References
C.J. Wood, J.D. Biamonte, D.G. Cory, Tensor networks and graphical calculus for open quantum systems, Quant. Inf. Comp. 15, 0579-0811 (2015). arXiv:1111.6950 [quant-ph]
Initialize a quantum channel Stinespring operator.
- Parameters
(QuantumCircuit or (data) – Instruction or BaseOperator or matrix): data to initialize superoperator.
input_dims (tuple) – the input subsystem dimensions. [Default: None]
output_dims (tuple) – the output subsystem dimensions. [Default: None]
- Raises
QiskitError – if input data cannot be initialized as a a list of Kraus matrices.
- Additional Information:
If the input or output dimensions are None, they will be automatically determined from the input data. This can fail for the Stinespring operator if the output dimension cannot be automatically determined.
-
__init__
(data, input_dims=None, output_dims=None)[source]¶ Initialize a quantum channel Stinespring operator.
- Parameters
(QuantumCircuit or (data) – Instruction or BaseOperator or matrix): data to initialize superoperator.
input_dims (tuple) – the input subsystem dimensions. [Default: None]
output_dims (tuple) – the output subsystem dimensions. [Default: None]
- Raises
QiskitError – if input data cannot be initialized as a a list of Kraus matrices.
- Additional Information:
If the input or output dimensions are None, they will be automatically determined from the input data. This can fail for the Stinespring operator if the output dimension cannot be automatically determined.
Methods
__init__
(data[, input_dims, output_dims])Initialize a quantum channel Stinespring operator.
adjoint
()Return the adjoint quantum channel.
compose
(other[, qargs, front])Return the operator composition with another Stinespring.
Return the conjugate quantum channel.
copy
()Make a deep copy of current operator.
dot
(other[, qargs])Return the right multiplied operator self * other.
expand
(other)Return the reverse-order tensor product with another Stinespring.
input_dims
([qargs])Return tuple of input dimension for specified subsystems.
is_cp
([atol, rtol])Test if Choi-matrix is completely-positive (CP)
is_cptp
([atol, rtol])Return True if completely-positive trace-preserving.
is_tp
([atol, rtol])Test if a channel is trace-preserving (TP)
is_unitary
([atol, rtol])Return True if QuantumChannel is a unitary channel.
output_dims
([qargs])Return tuple of output dimension for specified subsystems.
power
(n)Return the power of the quantum channel.
reshape
([input_dims, output_dims, num_qubits])Return a shallow copy with reshaped input and output subsystem dimensions.
tensor
(other)Return the tensor product with another Stinespring.
Convert to a Kraus or UnitaryGate circuit instruction.
Try to convert channel to a unitary representation Operator.
Return the transpose quantum channel.
Attributes
Default absolute tolerance parameter for float comparisons.
Return data.
Return tuple (input_shape, output_shape).
Return the number of qubits if a N-qubit operator or None otherwise.
Return the qargs for the operator.
Default relative tolerance parameter for float comparisons.
Return operator settings.
-
adjoint
()¶ Return the adjoint quantum channel.
Note
This is equivalent to the matrix Hermitian conjugate in the
SuperOp
representation ie. for a channel \(\mathcal{E}\), the SuperOp of the adjoint channel \(\mathcal{{E}}^\dagger\) is \(S_{\mathcal{E}^\dagger} = S_{\mathcal{E}}^\dagger\).
-
property
atol
¶ Default absolute tolerance parameter for float comparisons.
-
compose
(other, qargs=None, front=False)[source]¶ Return the operator composition with another Stinespring.
- Parameters
other (Stinespring) – a Stinespring object.
qargs (list or None) – Optional, a list of subsystem positions to apply other on. If None apply on all subsystems (default: None).
front (bool) – If True compose using right operator multiplication, instead of left multiplication [default: False].
- Returns
The composed Stinespring.
- Return type
- Raises
QiskitError – if other cannot be converted to an operator, or has incompatible dimensions for specified subsystems.
Note
Composition (
&
) by default is defined as left matrix multiplication for matrix operators, whiledot()
is defined as right matrix multiplication. That is thatA & B == A.compose(B)
is equivalent toB.dot(A)
whenA
andB
are of the same type.Setting the
front=True
kwarg changes this to right matrix multiplication and is equivalent to thedot()
methodA.dot(B) == A.compose(B, front=True)
.
-
conjugate
()[source]¶ Return the conjugate quantum channel.
Note
This is equivalent to the matrix complex conjugate in the
SuperOp
representation ie. for a channel \(\mathcal{E}\), the SuperOp of the conjugate channel \(\overline{{\mathcal{{E}}}}\) is \(S_{\overline{\mathcal{E}^\dagger}} = \overline{S_{\mathcal{E}}}\).
-
copy
()¶ Make a deep copy of current operator.
-
property
data
¶ Return data.
-
property
dim
¶ Return tuple (input_shape, output_shape).
-
dot
(other, qargs=None)¶ Return the right multiplied operator self * other.
-
expand
(other)[source]¶ Return the reverse-order tensor product with another Stinespring.
- Parameters
other (Stinespring) – a Stinespring object.
- Returns
- the tensor product \(b \otimes a\), where \(a\)
is the current Stinespring, and \(b\) is the other Stinespring.
- Return type
-
input_dims
(qargs=None)¶ Return tuple of input dimension for specified subsystems.
-
is_cp
(atol=None, rtol=None)¶ Test if Choi-matrix is completely-positive (CP)
-
is_tp
(atol=None, rtol=None)¶ Test if a channel is trace-preserving (TP)
-
is_unitary
(atol=None, rtol=None)¶ Return True if QuantumChannel is a unitary channel.
-
property
num_qubits
¶ Return the number of qubits if a N-qubit operator or None otherwise.
-
output_dims
(qargs=None)¶ Return tuple of output dimension for specified subsystems.
-
power
(n)¶ Return the power of the quantum channel.
- Parameters
n (float) – the power exponent.
- Returns
the channel \(\mathcal{{E}} ^n\).
- Return type
- Raises
QiskitError – if the input and output dimensions of the SuperOp are not equal.
Note
For non-positive or non-integer exponents the power is defined as the matrix power of the
SuperOp
representation ie. for a channel \(\mathcal{{E}}\), the SuperOp of the powered channel \(\mathcal{{E}}^\n\) is \(S_{{\mathcal{{E}}^n}} = S_{{\mathcal{{E}}}}^n\).
-
property
qargs
¶ Return the qargs for the operator.
-
reshape
(input_dims=None, output_dims=None, num_qubits=None)¶ Return a shallow copy with reshaped input and output subsystem dimensions.
- Parameters
input_dims (None or tuple) – new subsystem input dimensions. If None the original input dims will be preserved [Default: None].
output_dims (None or tuple) – new subsystem output dimensions. If None the original output dims will be preserved [Default: None].
num_qubits (None or int) – reshape to an N-qubit operator [Default: None].
- Returns
returns self with reshaped input and output dimensions.
- Return type
BaseOperator
- Raises
QiskitError – if combined size of all subsystem input dimension or subsystem output dimensions is not constant.
-
property
rtol
¶ Default relative tolerance parameter for float comparisons.
-
property
settings
¶ Return operator settings.
-
tensor
(other)[source]¶ Return the tensor product with another Stinespring.
- Parameters
other (Stinespring) – a Stinespring object.
- Returns
- the tensor product \(a \otimes b\), where \(a\)
is the current Stinespring, and \(b\) is the other Stinespring.
- Return type
Note
The tensor product can be obtained using the
^
binary operator. Hencea.tensor(b)
is equivalent toa ^ b
.
-
to_instruction
()¶ Convert to a Kraus or UnitaryGate circuit instruction.
If the channel is unitary it will be added as a unitary gate, otherwise it will be added as a kraus simulator instruction.
- Returns
A kraus instruction for the channel.
- Return type
- Raises
QiskitError – if input data is not an N-qubit CPTP quantum channel.
-
to_operator
()¶ Try to convert channel to a unitary representation Operator.