qiskit.quantum_info.Operator¶
-
class
Operator
(data, input_dims=None, output_dims=None)[source]¶ Matrix operator class
This represents a matrix operator \(M\) that will
evolve()
aStatevector
\(|\psi\rangle\) by matrix-vector multiplication\[|\psi\rangle \mapsto M|\psi\rangle,\]and will
evolve()
aDensityMatrix
\(\rho\) by left and right multiplication\[\rho \mapsto M \rho M^\dagger.\]Initialize an operator object.
- Parameters
(QuantumCircuit or (data) – Instruction or BaseOperator or matrix): data to initialize operator.
input_dims (tuple) – the input subsystem dimensions. [Default: None]
output_dims (tuple) – the output subsystem dimensions. [Default: None]
- Raises
QiskitError – if input data cannot be initialized as an operator.
- Additional Information:
If the input or output dimensions are None, they will be automatically determined from the input data. If the input data is a Numpy array of shape (2**N, 2**N) qubit systems will be used. If the input operator is not an N-qubit operator, it will assign a single subsystem with dimension specified by the shape of the input.
-
__init__
(data, input_dims=None, output_dims=None)[source]¶ Initialize an operator object.
- Parameters
(QuantumCircuit or (data) – Instruction or BaseOperator or matrix): data to initialize operator.
input_dims (tuple) – the input subsystem dimensions. [Default: None]
output_dims (tuple) – the output subsystem dimensions. [Default: None]
- Raises
QiskitError – if input data cannot be initialized as an operator.
- Additional Information:
If the input or output dimensions are None, they will be automatically determined from the input data. If the input data is a Numpy array of shape (2**N, 2**N) qubit systems will be used. If the input operator is not an N-qubit operator, it will assign a single subsystem with dimension specified by the shape of the input.
Methods
__init__
(data[, input_dims, output_dims])Initialize an operator object.
adjoint
()Return the adjoint of the Operator.
compose
(other[, qargs, front])Return the operator composition with another Operator.
Return the conjugate of the Operator.
copy
()Make a deep copy of current operator.
dot
(other[, qargs])Return the right multiplied operator self * other.
equiv
(other[, rtol, atol])Return True if operators are equivalent up to global phase.
expand
(other)Return the reverse-order tensor product with another Operator.
from_label
(label)Return a tensor product of single-qubit operators.
input_dims
([qargs])Return tuple of input dimension for specified subsystems.
is_unitary
([atol, rtol])Return True if operator is a unitary matrix.
output_dims
([qargs])Return tuple of output dimension for specified subsystems.
power
(n)Return the matrix power of the operator.
reshape
([input_dims, output_dims, num_qubits])Return a shallow copy with reshaped input and output subsystem dimensions.
Return an Operator with reversed subsystem ordering.
tensor
(other)Return the tensor product with another Operator.
Convert to a UnitaryGate instruction.
Convert operator to matrix operator class
Return the transpose of the Operator.
Attributes
Default absolute tolerance parameter for float comparisons.
Return data.
Return tuple (input_shape, output_shape).
Return the number of qubits if a N-qubit operator or None otherwise.
Return the qargs for the operator.
Default relative tolerance parameter for float comparisons.
Return operator settings.
-
adjoint
()¶ Return the adjoint of the Operator.
-
property
atol
¶ Default absolute tolerance parameter for float comparisons.
-
compose
(other, qargs=None, front=False)[source]¶ Return the operator composition with another Operator.
- Parameters
other (Operator) – a Operator object.
qargs (list or None) – Optional, a list of subsystem positions to apply other on. If None apply on all subsystems (default: None).
front (bool) – If True compose using right operator multiplication, instead of left multiplication [default: False].
- Returns
The composed Operator.
- Return type
- Raises
QiskitError – if other cannot be converted to an operator, or has incompatible dimensions for specified subsystems.
Note
Composition (
&
) by default is defined as left matrix multiplication for matrix operators, whiledot()
is defined as right matrix multiplication. That is thatA & B == A.compose(B)
is equivalent toB.dot(A)
whenA
andB
are of the same type.Setting the
front=True
kwarg changes this to right matrix multiplication and is equivalent to thedot()
methodA.dot(B) == A.compose(B, front=True)
.
-
copy
()¶ Make a deep copy of current operator.
-
property
data
¶ Return data.
-
property
dim
¶ Return tuple (input_shape, output_shape).
-
dot
(other, qargs=None)¶ Return the right multiplied operator self * other.
-
equiv
(other, rtol=None, atol=None)[source]¶ Return True if operators are equivalent up to global phase.
- Parameters
other (Operator) – an operator object.
rtol (float) – relative tolerance value for comparison.
atol (float) – absolute tolerance value for comparison.
- Returns
True if operators are equivalent up to global phase.
- Return type
bool
-
classmethod
from_label
(label)[source]¶ Return a tensor product of single-qubit operators.
- Parameters
label (string) – single-qubit operator string.
- Returns
The N-qubit operator.
- Return type
- Raises
QiskitError – if the label contains invalid characters, or the length of the label is larger than an explicitly specified num_qubits.
- Additional Information:
The labels correspond to the single-qubit matrices: ‘I’: [[1, 0], [0, 1]] ‘X’: [[0, 1], [1, 0]] ‘Y’: [[0, -1j], [1j, 0]] ‘Z’: [[1, 0], [0, -1]] ‘H’: [[1, 1], [1, -1]] / sqrt(2) ‘S’: [[1, 0], [0 , 1j]] ‘T’: [[1, 0], [0, (1+1j) / sqrt(2)]] ‘0’: [[1, 0], [0, 0]] ‘1’: [[0, 0], [0, 1]] ‘+’: [[0.5, 0.5], [0.5 , 0.5]] ‘-‘: [[0.5, -0.5], [-0.5 , 0.5]] ‘r’: [[0.5, -0.5j], [0.5j , 0.5]] ‘l’: [[0.5, 0.5j], [-0.5j , 0.5]]
-
input_dims
(qargs=None)¶ Return tuple of input dimension for specified subsystems.
-
property
num_qubits
¶ Return the number of qubits if a N-qubit operator or None otherwise.
-
output_dims
(qargs=None)¶ Return tuple of output dimension for specified subsystems.
-
power
(n)[source]¶ Return the matrix power of the operator.
- Parameters
n (float) – the power to raise the matrix to.
- Returns
the resulting operator
O ** n
.- Return type
- Raises
QiskitError – if the input and output dimensions of the operator are not equal.
-
property
qargs
¶ Return the qargs for the operator.
-
reshape
(input_dims=None, output_dims=None, num_qubits=None)¶ Return a shallow copy with reshaped input and output subsystem dimensions.
- Parameters
input_dims (None or tuple) – new subsystem input dimensions. If None the original input dims will be preserved [Default: None].
output_dims (None or tuple) – new subsystem output dimensions. If None the original output dims will be preserved [Default: None].
num_qubits (None or int) – reshape to an N-qubit operator [Default: None].
- Returns
returns self with reshaped input and output dimensions.
- Return type
BaseOperator
- Raises
QiskitError – if combined size of all subsystem input dimension or subsystem output dimensions is not constant.
-
reverse_qargs
()[source]¶ Return an Operator with reversed subsystem ordering.
For a tensor product operator this is equivalent to reversing the order of tensor product subsystems. For an operator \(A = A_{n-1} \otimes ... \otimes A_0\) the returned operator will be \(A_0 \otimes ... \otimes A_{n-1}\).
- Returns
the operator with reversed subsystem order.
- Return type
-
property
rtol
¶ Default relative tolerance parameter for float comparisons.
-
property
settings
¶ Return operator settings.
-
tensor
(other)[source]¶ Return the tensor product with another Operator.
- Parameters
other (Operator) – a Operator object.
- Returns
- the tensor product \(a \otimes b\), where \(a\)
is the current Operator, and \(b\) is the other Operator.
- Return type
Note
The tensor product can be obtained using the
^
binary operator. Hencea.tensor(b)
is equivalent toa ^ b
.