qiskit.quantum_info.Pauli¶
-
class
Pauli
(data=None, x=None, *, z=None, label=None)[source]¶ N-qubit Pauli operator.
This class represents an operator \(P\) from the full \(n\)-qubit Pauli group
\[P = (-i)^{q} P_{n-1} \otimes ... \otimes P_{0}\]where \(q\in \mathbb{Z}_4\) and \(P_i \in \{I, X, Y, Z\}\) are single-qubit Pauli matrices:
\[\begin{split}I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.\end{split}\]Initialization
A Pauli object can be initialized in several ways:
Pauli(obj)
where
obj
is a Pauli string,Pauli
orScalarOp
operator, or a Pauli gate orQuantumCircuit
containing only Pauli gates.Pauli((z, x, phase))
where
z
andx
are booleannumpy.ndarrays
andphase
is an integer in[0, 1, 2, 3]
.Pauli((z, x))
equivalent to
Pauli((z, x, 0))
with trivial phase.
String representation
An \(n\)-qubit Pauli may be represented by a string consisting of \(n\) characters from
['I', 'X', 'Y', 'Z']
, and optionally phase coefficient in \(['', '-i', '-', 'i']\). For example:XYZ
or'-iZIZ'
.In the string representation qubit-0 corresponds to the right-most Pauli character, and qubit-\((n-1)\) to the left-most Pauli character. For example
'XYZ'
represents \(X\otimes Y \otimes Z\) with'Z'
on qubit-0,'Y'
on qubit-1, and'X'
on qubit-3.The string representation can be converted to a
Pauli
using the class initialization (Pauli('-iXYZ')
). APauli
object can be converted back to the string representation using theto_label()
method orstr(pauli)
.Note
Using
str
to convert aPauli
to a string will truncate the returned string for large numbers of qubits whileto_label()
will return the full string with no truncation. The default truncation length is 50 characters. The default value can be changed by setting the class __truncate__ attribute to an integer value. If set to0
no truncation will be performed.Array Representation
The internal data structure of an \(n\)-qubit Pauli is two length-\(n\) boolean vectors \(z \in \mathbb{Z}_2^N\), \(x \in \mathbb{Z}_2^N\), and an integer \(q \in \mathbb{Z}_4\) defining the Pauli operator
\[P &= (-i)^{q + z\cdot x} Z^z \cdot X^x.\]The \(k\) and \(x\) arrays
\[\begin{split}P &= P_{n-1} \otimes ... \otimes P_{0} \\ P_k &= (-i)^{z[k] * x[k]} Z^{z[k]}\cdot X^{x[k]}\end{split}\]where
z[k] = P.z[k]
,x[k] = P.x[k]
respectively.The \(z\) and \(x\) arrays can be accessed and updated using the
z
andx
properties respectively. The phase integer \(q\) can be accessed and updated using thephase
property.Matrix Operator Representation
Pauli’s can be converted to \((2^n, 2^n)\)
Operator
using theto_operator()
method, or to a dense or sparse complex matrix using theto_matrix()
method.Data Access
The individual qubit Paulis can be accessed and updated using the
[]
operator which accepts integer, lists, or slices for selecting subsets of Paulis. Note that selecting subsets of Pauli’s will discard the phase of the current Pauli.For example
Initialize the Pauli.
When using the symplectic array input data both z and x arguments must be provided, however the first (z) argument can be used alone for string label, Pauli operator, or ScalarOp input data.
- Parameters
data (str or tuple or Pauli or ScalarOp) – input data for Pauli. If input is a tuple it must be of the form
(z, x)
or (z, x, phase)`` wherez
andx
are boolean Numpy arrays, and phase is an integer from Z_4.x (np.ndarray) – DEPRECATED, symplectic x vector.
z (np.ndarray) – DEPRECATED, symplectic z vector.
label (str) – DEPRECATED, string label.
- Raises
QiskitError – if input array is invalid shape.
-
__init__
(data=None, x=None, *, z=None, label=None)[source]¶ Initialize the Pauli.
When using the symplectic array input data both z and x arguments must be provided, however the first (z) argument can be used alone for string label, Pauli operator, or ScalarOp input data.
- Parameters
data (str or tuple or Pauli or ScalarOp) – input data for Pauli. If input is a tuple it must be of the form
(z, x)
or (z, x, phase)`` wherez
andx
are boolean Numpy arrays, and phase is an integer from Z_4.x (np.ndarray) – DEPRECATED, symplectic x vector.
z (np.ndarray) – DEPRECATED, symplectic z vector.
label (str) – DEPRECATED, string label.
- Raises
QiskitError – if input array is invalid shape.
Methods
__init__
([data, x, z, label])Initialize the Pauli.
adjoint
()Return the adjoint of the Operator.
anticommutes
(other[, qargs])Return True if other Pauli anticommutes with self.
append_paulis
([paulis, pauli_labels])DEPRECATED: Append pauli at the end.
commutes
(other[, qargs])Return True if the Pauli commutes with other.
compose
(other[, qargs, front, inplace])Return the operator composition with another Pauli.
Return the conjugate of each Pauli in the list.
copy
()Make a deep copy of current operator.
delete
(qubits)Return a Pauli with qubits deleted.
delete_qubits
(indices)DEPRECATED: Delete pauli at the indices.
dot
(other[, qargs, inplace])Return the right multiplied operator self * other.
equiv
(other)Return True if Pauli’s are equivalent up to group phase.
evolve
(other[, qargs])Heisenberg picture evolution of a Pauli by a Clifford.
expand
(other)Return the reverse-order tensor product with another Pauli.
from_label
(*args, **kwargs)DEPRECATED: Construct a Pauli from a string label.
input_dims
([qargs])Return tuple of input dimension for specified subsystems.
insert
(qubits, value)Insert a Pauli at specific qubit value.
insert_paulis
([indices, paulis, pauli_labels])DEPRECATED: Insert or append pauli to the targeted indices.
inverse
()Return the inverse of the Pauli.
kron
(other)DEPRECATED: Kronecker product of two paulis.
output_dims
([qargs])Return tuple of output dimension for specified subsystems.
pauli_single
(num_qubits, index, pauli_label)DEPRECATED: Generate single qubit pauli at index with pauli_label with length num_qubits.
power
(n)Return the compose of a operator with itself n times.
random
(num_qubits[, seed])DEPRECATED: Return a random Pauli on number of qubits.
reshape
([input_dims, output_dims, num_qubits])Return a shallow copy with reshaped input and output subsystem dimensions.
set_truncation
(val)Set the max number of Pauli characters to display before truncation/
sgn_prod
(*args, **kwargs)DEPRECATED: Multiply two Paulis and track the phase.
tensor
(other)Return the tensor product with another Pauli.
Convert to Pauli circuit instruction.
to_label
()Convert a Pauli to a string label.
to_matrix
([sparse])Convert to a Numpy array or sparse CSR matrix.
DEPRECATED Convert Pauli to a sparse matrix representation (CSR format).
Return the transpose of each Pauli in the list.
update_x
(x[, indices])DEPRECATED: Update partial or entire x.
update_z
(z[, indices])DEPRECATED: Update partial or entire z.
Attributes
Return tuple (input_shape, output_shape).
Return the number of qubits if a N-qubit operator or None otherwise.
Return the group phase exponent for the Pauli.
Return the qargs for the operator.
The x vector for the Pauli.
The z vector for the Pauli.
-
anticommutes
(other, qargs=None)[source]¶ Return True if other Pauli anticommutes with self.
- Parameters
other (Pauli) – another Pauli operator.
qargs (list) – qubits to apply dot product on (default: None).
- Returns
True if Pauli’s anticommute, False if they commute.
- Return type
bool
-
commutes
(other, qargs=None)[source]¶ Return True if the Pauli commutes with other.
- Parameters
other (Pauli or PauliList) – another Pauli operator.
qargs (list) – qubits to apply dot product on (default: None).
- Returns
True if Pauli’s commute, False if they anti-commute.
- Return type
bool
-
compose
(other, qargs=None, front=False, inplace=False)[source]¶ Return the operator composition with another Pauli.
- Parameters
other (Pauli) – a Pauli object.
qargs (list or None) – Optional, qubits to apply dot product on (default: None).
front (bool) – If True compose using right operator multiplication, instead of left multiplication [default: False].
inplace (bool) – If True update in-place (default: False).
- Returns
The composed Pauli.
- Return type
- Raises
QiskitError – if other cannot be converted to an operator, or has incompatible dimensions for specified subsystems.
Note
Composition (
&
) by default is defined as left matrix multiplication for matrix operators, whiledot()
is defined as right matrix multiplication. That is thatA & B == A.compose(B)
is equivalent toB.dot(A)
whenA
andB
are of the same type.Setting the
front=True
kwarg changes this to right matrix multiplication and is equivalent to thedot()
methodA.dot(B) == A.compose(B, front=True)
.
-
copy
()¶ Make a deep copy of current operator.
-
delete
(qubits)[source]¶ Return a Pauli with qubits deleted.
- Parameters
qubits (int or list) – qubits to delete from Pauli.
- Returns
the resulting Pauli with the specified qubits removed.
- Return type
- Raises
QiskitError – if ind is out of bounds for the array size or number of qubits.
-
delete_qubits
(indices)[source]¶ DEPRECATED: Delete pauli at the indices.
This function is deprecated. Equivalent functionality can be obtained using the
delete()
method.- Parameters
indices (list[int]) – the indices of to-be-deleted paulis
- Returns
self
- Return type
-
property
dim
¶ Return tuple (input_shape, output_shape).
-
equiv
(other)[source]¶ Return True if Pauli’s are equivalent up to group phase.
- Parameters
other (Pauli) – an operator object.
- Returns
True if the Pauli’s are equivalent up to group phase.
- Return type
bool
-
evolve
(other, qargs=None)[source]¶ Heisenberg picture evolution of a Pauli by a Clifford.
This returns the Pauli \(P^\prime = C^\dagger.P.C\).
- Parameters
other (Pauli or Clifford or QuantumCircuit) – The Clifford operator to evolve by.
qargs (list) – a list of qubits to apply the Clifford to.
- Returns
the Pauli \(C^\dagger.P.C\).
- Return type
- Raises
QiskitError – if the Clifford number of qubits and qargs don’t match.
-
static
from_label
(*args, **kwargs)[source]¶ DEPRECATED: Construct a Pauli from a string label.
This function is deprecated use
Pauli(label)
instead.- Parameters
label (str) – Pauli string label.
- Returns
the constructed Pauli.
- Return type
- Raises
QiskitError – If the input list is empty or contains invalid
Pauli strings. –
-
input_dims
(qargs=None)¶ Return tuple of input dimension for specified subsystems.
-
insert_paulis
(indices=None, paulis=None, pauli_labels=None)[source]¶ DEPRECATED: Insert or append pauli to the targeted indices.
This function is deprecated. Similar functionality can be obtained using the
insert()
method.If indices is None, it means append at the end.
- Parameters
indices (list[int]) – the qubit indices to be inserted
paulis (Pauli) – the to-be-inserted or appended pauli
pauli_labels (list[str]) – the to-be-inserted or appended pauli label
Note
the indices refers to the location of original paulis, e.g. if indices = [0, 2], pauli_labels = [‘Z’, ‘I’] and original pauli = ‘ZYXI’ the pauli will be updated to ZY’I’XI’Z’ ‘Z’ and ‘I’ are inserted before the qubit at 0 and 2.
- Returns
self
- Return type
- Raises
QiskitError – provide both paulis and pauli_labels at the same time
-
kron
(other)[source]¶ DEPRECATED: Kronecker product of two paulis.
This function is deprecated. Use
expand()
instead.Order is $P_2 (other) otimes P_1 (self)$
-
property
num_qubits
¶ Return the number of qubits if a N-qubit operator or None otherwise.
-
output_dims
(qargs=None)¶ Return tuple of output dimension for specified subsystems.
-
classmethod
pauli_single
(num_qubits, index, pauli_label)[source]¶ DEPRECATED: Generate single qubit pauli at index with pauli_label with length num_qubits.
- Parameters
num_qubits (int) – the length of pauli
index (int) – the qubit index to insert the single qubit
pauli_label (str) – pauli
- Returns
single qubit pauli
- Return type
-
property
phase
¶ Return the group phase exponent for the Pauli.
-
power
(n)¶ Return the compose of a operator with itself n times.
- Parameters
n (int) – the number of times to compose with self (n>0).
- Returns
the n-times composed operator.
- Return type
- Raises
QiskitError – if the input and output dimensions of the operator are not equal, or the power is not a positive integer.
-
property
qargs
¶ Return the qargs for the operator.
-
classmethod
random
(num_qubits, seed=None)[source]¶ DEPRECATED: Return a random Pauli on number of qubits.
This function is deprecated use
random_pauli()
instead.- Parameters
num_qubits (int) – the number of qubits
seed (int) – Optional. To set a random seed.
- Returns
the random pauli
- Return type
-
reshape
(input_dims=None, output_dims=None, num_qubits=None)¶ Return a shallow copy with reshaped input and output subsystem dimensions.
- Parameters
input_dims (None or tuple) – new subsystem input dimensions. If None the original input dims will be preserved [Default: None].
output_dims (None or tuple) – new subsystem output dimensions. If None the original output dims will be preserved [Default: None].
num_qubits (None or int) – reshape to an N-qubit operator [Default: None].
- Returns
returns self with reshaped input and output dimensions.
- Return type
BaseOperator
- Raises
QiskitError – if combined size of all subsystem input dimension or subsystem output dimensions is not constant.
-
classmethod
set_truncation
(val)[source]¶ Set the max number of Pauli characters to display before truncation/
- Parameters
val (int) – the number of characters.
Note
Truncation will be disabled if the truncation value is set to 0.
-
static
sgn_prod
(*args, **kwargs)[source]¶ DEPRECATED: Multiply two Paulis and track the phase.
This function is deprecated. The Pauli class now handles full Pauli group multiplication using
compose()
ordot()
.$P_3 = P_1 otimes P_2$: X*Y
-
tensor
(other)[source]¶ Return the tensor product with another Pauli.
- Parameters
other (Pauli) – a Pauli object.
- Returns
- the tensor product \(a \otimes b\), where \(a\)
is the current Pauli, and \(b\) is the other Pauli.
- Return type
Note
The tensor product can be obtained using the
^
binary operator. Hencea.tensor(b)
is equivalent toa ^ b
.
-
to_label
()[source]¶ Convert a Pauli to a string label.
Note
The difference between to_label and
__str__()
is that the later will truncate the output for large numbers of qubits.- Returns
the Pauli string label.
- Return type
str
-
to_matrix
(sparse=False)[source]¶ Convert to a Numpy array or sparse CSR matrix.
- Parameters
sparse (bool) – if True return sparse CSR matrices, otherwise return dense Numpy arrays (default: False).
- Returns
The Pauli matrix.
- Return type
array
-
to_spmatrix
()[source]¶ DEPRECATED Convert Pauli to a sparse matrix representation (CSR format).
This function is deprecated. Use
to_matrix()
with kwargsparse=True
instead.- Returns
a sparse matrix with CSR format that represents the pauli.
- Return type
scipy.sparse.csr_matrix
-
update_x
(x, indices=None)[source]¶ DEPRECATED: Update partial or entire x.
This function is deprecated. Use the setter for
X
instead.- Parameters
x (numpy.ndarray or list) – to-be-updated x
indices (numpy.ndarray or list or optional) – to-be-updated qubit indices
- Returns
self
- Return type
- Raises
QiskitError – when updating whole x, the number of qubits must be the same.
-
update_z
(z, indices=None)[source]¶ DEPRECATED: Update partial or entire z.
This function is deprecated. Use the setter for
Z
instead.- Parameters
z (numpy.ndarray or list) – to-be-updated z
indices (numpy.ndarray or list or optional) – to-be-updated qubit indices
- Returns
self
- Return type
- Raises
QiskitError – when updating whole z, the number of qubits must be the same.
-
property
x
¶ The x vector for the Pauli.
-
property
z
¶ The z vector for the Pauli.