qiskit.aqua.components.neural_networks.DiscriminativeNetwork¶
-
class
DiscriminativeNetwork
[source]¶ Base class for discriminative Quantum or Classical Neural Networks.
This method should initialize the module but raise an exception if a required component of the module is not available.
Methods
__init__
()Initialize self.
get_label
(x)Apply quantum/classical neural network to the given input sample and compute the respective data label
loss
(x, y[, weights])Loss function used for optimization
save_model
(snapshot_dir)Save discriminator model
set_seed
(seed)Set seed.
train
(data, weights[, penalty, …])Perform one training step w.r.t to the discriminator’s parameters
-
abstract
get_label
(x)[source]¶ Apply quantum/classical neural network to the given input sample and compute the respective data label
- Parameters
x (Discriminator) – input, i.e. data sample.
- Raises
NotImplementedError – not implemented
-
abstract
loss
(x, y, weights=None)[source]¶ Loss function used for optimization
- Parameters
x (
Iterable
) – output.y (
Iterable
) – the data pointweights (
Optional
[ndarray
]) – Data weights.
- Returns
Loss w.r.t to the generated data points.
- Raises
NotImplementedError – not implemented
-
abstract
save_model
(snapshot_dir)[source]¶ Save discriminator model
- Parameters
snapshot_dir (
str
) – Directory to save the model- Raises
NotImplementedError – not implemented
-
abstract
set_seed
(seed)[source]¶ Set seed.
- Parameters
seed (int) – seed
- Raises
NotImplementedError – not implemented
-
abstract
train
(data, weights, penalty=False, quantum_instance=None, shots=None)[source]¶ Perform one training step w.r.t to the discriminator’s parameters
- Parameters
data (
Iterable
) – Data batch.weights (
Iterable
) – Data sample weights.penalty (
bool
) – Indicate whether or not penalty function is applied to the loss function. Ignored if no penalty function defined.quantum_instance (QuantumInstance) – used to run Quantum network. Ignored for a classical network.
shots (
Optional
[int
]) – Number of shots for hardware or qasm execution. Ignored for classical network
- Returns
with discriminator loss and updated parameters.
- Return type
dict
- Raises
NotImplementedError – not implemented
-
abstract