qiskit.algorithms.optimizers.SPSA¶
-
class
SPSA
(maxiter=100, blocking=False, allowed_increase=None, trust_region=False, learning_rate=None, perturbation=None, last_avg=1, resamplings=1, perturbation_dims=None, callback=None)[source]¶ Simultaneous Perturbation Stochastic Approximation (SPSA) optimizer.
SPSA [1] is an algorithmic method for optimizing systems with multiple unknown parameters. As an optimization method, it is appropriately suited to large-scale population models, adaptive modeling, and simulation optimization.
See also
Many examples are presented at the SPSA Web site.
SPSA is a descent method capable of finding global minima, sharing this property with other methods as simulated annealing. Its main feature is the gradient approximation, which requires only two measurements of the objective function, regardless of the dimension of the optimization problem.
Note
SPSA can be used in the presence of noise, and it is therefore indicated in situations involving measurement uncertainty on a quantum computation when finding a minimum. If you are executing a variational algorithm using a Quantum ASseMbly Language (QASM) simulator or a real device, SPSA would be the most recommended choice among the optimizers provided here.
The optimization process can includes a calibration phase if neither the
learning_rate
norperturbation
is provided, which requires additional functional evaluations. (Note that either both or none must be set.) For further details on the automatic calibration, please refer to the supplementary information section IV. of [2].References
[1]: J. C. Spall (1998). An Overview of the Simultaneous Perturbation Method for Efficient Optimization, Johns Hopkins APL Technical Digest, 19(4), 482–492. Online.
[2]: A. Kandala et al. (2017). Hardware-efficient Variational Quantum Eigensolver for Small Molecules and Quantum Magnets. Nature 549, pages242–246(2017). arXiv:1704.05018v2
- Parameters
maxiter (
int
) – The maximum number of iterations.blocking (
bool
) – If True, only accepts updates that improve the loss (minus some allowed increase, see next argument).allowed_increase (
Optional
[float
]) – If blocking is True, this sets by how much the loss can increase and still be accepted. If None, calibrated automatically to be twice the standard deviation of the loss function.trust_region (
bool
) – If True, restricts norm of the random direction to be \(\leq 1\).learning_rate (
Union
[float
,Callable
[[],Iterator
],None
]) – A generator yielding learning rates for the parameter updates, \(a_k\). If set, alsoperturbation
must be provided.perturbation (
Union
[float
,Callable
[[],Iterator
],None
]) – A generator yielding the perturbation magnitudes \(c_k\). If set, alsolearning_rate
must be provided.last_avg (
int
) – Return the average of thelast_avg
parameters instead of just the last parameter values.resamplings (
Union
[int
,Dict
[int
,int
]]) – The number of times the gradient is sampled using a random direction to construct a gradient estimate. Per default the gradient is estimated using only one random direction. If an integer, all iterations use the same number of resamplings. If a dictionary, this is interpreted as{iteration: number of resamplings per iteration}
.perturbation_dims (
Optional
[int
]) – The number of perturbed dimensions. Per default, all dimensions are perturbed, but a smaller, fixed number can be perturbed. If set, the perturbed dimensions are chosen uniformly at random.callback (
Optional
[Callable
[[int
,ndarray
,float
,float
,bool
],None
]]) – A callback function passed information in each iteration step. The information is, in this order: the number of function evaluations, the parameters, the function value, the stepsize, whether the step was accepted.
-
__init__
(maxiter=100, blocking=False, allowed_increase=None, trust_region=False, learning_rate=None, perturbation=None, last_avg=1, resamplings=1, perturbation_dims=None, callback=None)[source]¶ - Parameters
maxiter (
int
) – The maximum number of iterations.blocking (
bool
) – If True, only accepts updates that improve the loss (minus some allowed increase, see next argument).allowed_increase (
Optional
[float
]) – If blocking is True, this sets by how much the loss can increase and still be accepted. If None, calibrated automatically to be twice the standard deviation of the loss function.trust_region (
bool
) – If True, restricts norm of the random direction to be \(\leq 1\).learning_rate (
Union
[float
,Callable
[[],Iterator
],None
]) – A generator yielding learning rates for the parameter updates, \(a_k\). If set, alsoperturbation
must be provided.perturbation (
Union
[float
,Callable
[[],Iterator
],None
]) – A generator yielding the perturbation magnitudes \(c_k\). If set, alsolearning_rate
must be provided.last_avg (
int
) – Return the average of thelast_avg
parameters instead of just the last parameter values.resamplings (
Union
[int
,Dict
[int
,int
]]) – The number of times the gradient is sampled using a random direction to construct a gradient estimate. Per default the gradient is estimated using only one random direction. If an integer, all iterations use the same number of resamplings. If a dictionary, this is interpreted as{iteration: number of resamplings per iteration}
.perturbation_dims (
Optional
[int
]) – The number of perturbed dimensions. Per default, all dimensions are perturbed, but a smaller, fixed number can be perturbed. If set, the perturbed dimensions are chosen uniformly at random.callback (
Optional
[Callable
[[int
,ndarray
,float
,float
,bool
],None
]]) – A callback function passed information in each iteration step. The information is, in this order: the number of function evaluations, the parameters, the function value, the stepsize, whether the step was accepted.
Methods
__init__
([maxiter, blocking, …])- type maxiter
int
calibrate
(loss, initial_point[, c, …])Calibrate SPSA parameters with a powerseries as learning rate and perturbation coeffs.
estimate_stddev
(loss, initial_point[, avg])Estimate the standard deviation of the loss function.
Get the support level dictionary.
gradient_num_diff
(x_center, f, epsilon[, …])We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.
optimize
(num_vars, objective_function[, …])Perform optimization.
Print algorithm-specific options.
set_max_evals_grouped
(limit)Set max evals grouped
set_options
(**kwargs)Sets or updates values in the options dictionary.
wrap_function
(function, args)Wrap the function to implicitly inject the args at the call of the function.
Attributes
Returns bounds support level
Returns gradient support level
Returns initial point support level
Returns is bounds ignored
Returns is bounds required
Returns is bounds supported
Returns is gradient ignored
Returns is gradient required
Returns is gradient supported
Returns is initial point ignored
Returns is initial point required
Returns is initial point supported
Return setting
-
property
bounds_support_level
¶ Returns bounds support level
-
static
calibrate
(loss, initial_point, c=0.2, stability_constant=0, target_magnitude=None, alpha=0.602, gamma=0.101, modelspace=False)[source]¶ Calibrate SPSA parameters with a powerseries as learning rate and perturbation coeffs.
The powerseries are:
\[a_k = \frac{a}{(A + k + 1)^\alpha}, c_k = \frac{c}{(k + 1)^\gamma}\]- Parameters
loss (
Callable
[[ndarray
],float
]) – The loss function.initial_point (
ndarray
) – The initial guess of the iteration.c (
float
) – The initial perturbation magnitude.stability_constant (
float
) – The value of A.target_magnitude (
Optional
[float
]) – The target magnitude for the first update step, defaults to \(2\pi / 10\).alpha (
float
) – The exponent of the learning rate powerseries.gamma (
float
) – The exponent of the perturbation powerseries.modelspace (
bool
) – Whether the target magnitude is the difference of parameter values or function values (= model space).
- Returns
- A tuple of powerseries generators, the first one for the
learning rate and the second one for the perturbation.
- Return type
tuple(generator, generator)
-
static
estimate_stddev
(loss, initial_point, avg=25)[source]¶ Estimate the standard deviation of the loss function.
- Return type
float
-
static
gradient_num_diff
(x_center, f, epsilon, max_evals_grouped=1)¶ We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.
- Parameters
x_center (ndarray) – point around which we compute the gradient
f (func) – the function of which the gradient is to be computed.
epsilon (float) – the epsilon used in the numeric differentiation.
max_evals_grouped (int) – max evals grouped
- Returns
the gradient computed
- Return type
grad
-
property
gradient_support_level
¶ Returns gradient support level
-
property
initial_point_support_level
¶ Returns initial point support level
-
property
is_bounds_ignored
¶ Returns is bounds ignored
-
property
is_bounds_required
¶ Returns is bounds required
-
property
is_bounds_supported
¶ Returns is bounds supported
-
property
is_gradient_ignored
¶ Returns is gradient ignored
-
property
is_gradient_required
¶ Returns is gradient required
-
property
is_gradient_supported
¶ Returns is gradient supported
-
property
is_initial_point_ignored
¶ Returns is initial point ignored
-
property
is_initial_point_required
¶ Returns is initial point required
-
property
is_initial_point_supported
¶ Returns is initial point supported
-
optimize
(num_vars, objective_function, gradient_function=None, variable_bounds=None, initial_point=None)[source]¶ Perform optimization.
- Parameters
num_vars (int) – Number of parameters to be optimized.
objective_function (callable) – A function that computes the objective function.
gradient_function (callable) – A function that computes the gradient of the objective function, or None if not available.
variable_bounds (list[(float, float)]) – List of variable bounds, given as pairs (lower, upper). None means unbounded.
initial_point (numpy.ndarray[float]) – Initial point.
- Returns
- point, value, nfev
point: is a 1D numpy.ndarray[float] containing the solution value: is a float with the objective function value nfev: number of objective function calls made if available or None
- Raises
ValueError – invalid input
-
print_options
()¶ Print algorithm-specific options.
-
set_max_evals_grouped
(limit)¶ Set max evals grouped
-
set_options
(**kwargs)¶ Sets or updates values in the options dictionary.
The options dictionary may be used internally by a given optimizer to pass additional optional values for the underlying optimizer/optimization function used. The options dictionary may be initially populated with a set of key/values when the given optimizer is constructed.
- Parameters
kwargs (dict) – options, given as name=value.
-
property
setting
¶ Return setting
-
static
wrap_function
(function, args)¶ Wrap the function to implicitly inject the args at the call of the function.
- Parameters
function (func) – the target function
args (tuple) – the args to be injected
- Returns
wrapper
- Return type
function_wrapper