Código fonte para qiskit.circuit.quantumcircuit
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
# pylint: disable=bad-docstring-quotes,invalid-name
"""Quantum circuit object."""
import copy
import itertools
import functools
import warnings
import numbers
import multiprocessing as mp
from collections import OrderedDict, defaultdict
from typing import Union
import numpy as np
from qiskit.exceptions import QiskitError
from qiskit.utils.multiprocessing import is_main_process
from qiskit.circuit.instruction import Instruction
from qiskit.circuit.gate import Gate
from qiskit.circuit.parameter import Parameter
from qiskit.qasm.qasm import Qasm
from qiskit.qasm.exceptions import QasmError
from qiskit.circuit.exceptions import CircuitError
from qiskit.utils.deprecation import deprecate_function, deprecate_arguments
from .parameterexpression import ParameterExpression
from .quantumregister import QuantumRegister, Qubit, AncillaRegister, AncillaQubit
from .classicalregister import ClassicalRegister, Clbit
from .parametertable import ParameterTable, ParameterView
from .parametervector import ParameterVector, ParameterVectorElement
from .instructionset import InstructionSet
from .register import Register
from .bit import Bit
from .quantumcircuitdata import QuantumCircuitData
from .delay import Delay
try:
import pygments
from pygments.formatters import Terminal256Formatter # pylint: disable=no-name-in-module
from qiskit.qasm.pygments import OpenQASMLexer # pylint: disable=ungrouped-imports
from qiskit.qasm.pygments import QasmTerminalStyle # pylint: disable=ungrouped-imports
HAS_PYGMENTS = True
except Exception: # pylint: disable=broad-except
HAS_PYGMENTS = False
[documentos]class QuantumCircuit:
"""Create a new circuit.
A circuit is a list of instructions bound to some registers.
Args:
regs (list(:class:`Register`) or list(``int``) or list(list(:class:`Bit`))): The
registers to be included in the circuit.
* If a list of :class:`Register` objects, represents the :class:`QuantumRegister`
and/or :class:`ClassicalRegister` objects to include in the circuit.
For example:
* ``QuantumCircuit(QuantumRegister(4))``
* ``QuantumCircuit(QuantumRegister(4), ClassicalRegister(3))``
* ``QuantumCircuit(QuantumRegister(4, 'qr0'), QuantumRegister(2, 'qr1'))``
* If a list of ``int``, the amount of qubits and/or classical bits to include in
the circuit. It can either be a single int for just the number of quantum bits,
or 2 ints for the number of quantum bits and classical bits, respectively.
For example:
* ``QuantumCircuit(4) # A QuantumCircuit with 4 qubits``
* ``QuantumCircuit(4, 3) # A QuantumCircuit with 4 qubits and 3 classical bits``
* If a list of python lists containing :class:`Bit` objects, a collection of
:class:`Bit` s to be added to the circuit.
name (str): the name of the quantum circuit. If not set, an
automatically generated string will be assigned.
global_phase (float or ParameterExpression): The global phase of the circuit in radians.
metadata (dict): Arbitrary key value metadata to associate with the
circuit. This gets stored as free-form data in a dict in the
:attr:`~qiskit.circuit.QuantumCircuit.metadata` attribute. It will
not be directly used in the circuit.
Raises:
CircuitError: if the circuit name, if given, is not valid.
Examples:
Construct a simple Bell state circuit.
.. jupyter-execute::
from qiskit import QuantumCircuit
qc = QuantumCircuit(2, 2)
qc.h(0)
qc.cx(0, 1)
qc.measure([0, 1], [0, 1])
qc.draw()
Construct a 5-qubit GHZ circuit.
.. jupyter-execute::
from qiskit import QuantumCircuit
qc = QuantumCircuit(5)
qc.h(0)
qc.cx(0, range(1, 5))
qc.measure_all()
Construct a 4-qubit Bernstein-Vazirani circuit using registers.
.. jupyter-execute::
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit
qr = QuantumRegister(3, 'q')
anc = QuantumRegister(1, 'ancilla')
cr = ClassicalRegister(3, 'c')
qc = QuantumCircuit(qr, anc, cr)
qc.x(anc[0])
qc.h(anc[0])
qc.h(qr[0:3])
qc.cx(qr[0:3], anc[0])
qc.h(qr[0:3])
qc.barrier(qr)
qc.measure(qr, cr)
qc.draw()
"""
instances = 0
prefix = 'circuit'
# Class variable OPENQASM header
header = "OPENQASM 2.0;"
extension_lib = "include \"qelib1.inc\";"
[documentos] def __init__(self, *regs, name=None, global_phase=0, metadata=None):
if any(not isinstance(reg, (list, QuantumRegister, ClassicalRegister)) for reg in regs):
# check if inputs are integers, but also allow e.g. 2.0
try:
valid_reg_size = all(reg == int(reg) for reg in regs)
except (ValueError, TypeError):
valid_reg_size = False
if not valid_reg_size:
raise CircuitError("Circuit args must be Registers or integers. (%s '%s' was "
"provided)" % ([type(reg).__name__ for reg in regs], regs))
regs = tuple(int(reg) for reg in regs) # cast to int
self._base_name = None
if name is None:
self._base_name = self.cls_prefix()
self._name_update()
elif not isinstance(name, str):
raise CircuitError("The circuit name should be a string "
"(or None to auto-generate a name).")
else:
self._base_name = name
self.name = name
self._increment_instances()
# Data contains a list of instructions and their contexts,
# in the order they were applied.
self._data = []
# This is a map of registers bound to this circuit, by name.
self.qregs = []
self.cregs = []
self._qubits = []
self._qubit_set = set()
self._clbits = []
self._clbit_set = set()
self._ancillas = []
self._calibrations = defaultdict(dict)
self.add_register(*regs)
# Parameter table tracks instructions with variable parameters.
self._parameter_table = ParameterTable()
# Cache to avoid re-sorting parameters
self._parameters = None
self._layout = None
self._global_phase = 0
self.global_phase = global_phase
self.duration = None
self.unit = 'dt'
if not isinstance(metadata, dict) and metadata is not None:
raise TypeError("Only a dictionary or None is accepted for circuit metadata")
self._metadata = metadata
@property
def data(self):
"""Return the circuit data (instructions and context).
Returns:
QuantumCircuitData: a list-like object containing the tuples for the circuit's data.
Each tuple is in the format ``(instruction, qargs, cargs)``, where instruction is an
Instruction (or subclass) object, qargs is a list of Qubit objects, and cargs is a
list of Clbit objects.
"""
return QuantumCircuitData(self)
@property
def calibrations(self):
"""Return calibration dictionary.
The custom pulse definition of a given gate is of the form
{'gate_name': {(qubits, params): schedule}}
"""
return dict(self._calibrations)
@calibrations.setter
def calibrations(self, calibrations):
"""Set the circuit calibration data from a dictionary of calibration definition.
Args:
calibrations (dict): A dictionary of input in the format
{'gate_name': {(qubits, gate_params): schedule}}
"""
self._calibrations = defaultdict(dict, calibrations)
@data.setter
def data(self, data_input):
"""Sets the circuit data from a list of instructions and context.
Args:
data_input (list): A list of instructions with context
in the format (instruction, qargs, cargs), where Instruction
is an Instruction (or subclass) object, qargs is a list of
Qubit objects, and cargs is a list of Clbit objects.
"""
# If data_input is QuantumCircuitData(self), clearing self._data
# below will also empty data_input, so make a shallow copy first.
data_input = data_input.copy()
self._data = []
self._parameter_table = ParameterTable()
for inst, qargs, cargs in data_input:
self.append(inst, qargs, cargs)
@property
def metadata(self):
"""The user provided metadata associated with the circuit
The metadata for the circuit is a user provided ``dict`` of metadata
for the circuit. It will not be used to influence the execution or
operation of the circuit, but it is expected to be passed between
all transforms of the circuit (ie transpilation) and that providers will
associate any circuit metadata with the results it returns from
execution of that circuit.
"""
return self._metadata
@metadata.setter
def metadata(self, metadata):
"""Update the circuit metadata"""
if not isinstance(metadata, dict) and metadata is not None:
raise TypeError("Only a dictionary or None is accepted for circuit metadata")
self._metadata = metadata
def __str__(self):
return str(self.draw(output='text'))
def __eq__(self, other):
if not isinstance(other, QuantumCircuit):
return False
# TODO: remove the DAG from this function
from qiskit.converters import circuit_to_dag
return circuit_to_dag(self) == circuit_to_dag(other)
@classmethod
def _increment_instances(cls):
cls.instances += 1
[documentos] @classmethod
def cls_instances(cls):
"""Return the current number of instances of this class,
useful for auto naming."""
return cls.instances
[documentos] @classmethod
def cls_prefix(cls):
"""Return the prefix to use for auto naming."""
return cls.prefix
def _name_update(self):
"""update name of instance using instance number"""
if not is_main_process():
pid_name = f'-{mp.current_process().pid}'
else:
pid_name = ''
self.name = f'{self._base_name}-{self.cls_instances()}{pid_name}'
[documentos] def has_register(self, register):
"""
Test if this circuit has the register r.
Args:
register (Register): a quantum or classical register.
Returns:
bool: True if the register is contained in this circuit.
"""
has_reg = False
if (isinstance(register, QuantumRegister) and
register in self.qregs):
has_reg = True
elif (isinstance(register, ClassicalRegister) and
register in self.cregs):
has_reg = True
return has_reg
[documentos] def reverse_ops(self):
"""Reverse the circuit by reversing the order of instructions.
This is done by recursively reversing all instructions.
It does not invert (adjoint) any gate.
Returns:
QuantumCircuit: the reversed circuit.
Examples:
input:
┌───┐
q_0: ┤ H ├─────■──────
└───┘┌────┴─────┐
q_1: ─────┤ RX(1.57) ├
└──────────┘
output:
┌───┐
q_0: ─────■──────┤ H ├
┌────┴─────┐└───┘
q_1: ┤ RX(1.57) ├─────
└──────────┘
"""
reverse_circ = QuantumCircuit(self.qubits, self.clbits,
*self.qregs, *self.cregs,
name=self.name + '_reverse')
for inst, qargs, cargs in reversed(self.data):
reverse_circ._append(inst.reverse_ops(), qargs, cargs)
reverse_circ.duration = self.duration
reverse_circ.unit = self.unit
return reverse_circ
[documentos] def reverse_bits(self):
"""Return a circuit with the opposite order of wires.
The circuit is "vertically" flipped. If a circuit is
defined over multiple registers, the resulting circuit will have
the same registers but with their order flipped.
This method is useful for converting a circuit written in little-endian
convention to the big-endian equivalent, and vice versa.
Returns:
QuantumCircuit: the circuit with reversed bit order.
Examples:
input:
┌───┐
q_0: ┤ H ├─────■──────
└───┘┌────┴─────┐
q_1: ─────┤ RX(1.57) ├
└──────────┘
output:
┌──────────┐
q_0: ─────┤ RX(1.57) ├
┌───┐└────┬─────┘
q_1: ┤ H ├─────■──────
└───┘
"""
circ = QuantumCircuit(*reversed(self.qregs), *reversed(self.cregs),
name=self.name, global_phase=self.global_phase)
num_qubits = self.num_qubits
num_clbits = self.num_clbits
old_qubits = self.qubits
old_clbits = self.clbits
new_qubits = circ.qubits
new_clbits = circ.clbits
for inst, qargs, cargs in self.data:
new_qargs = [new_qubits[num_qubits - old_qubits.index(q) - 1] for q in qargs]
new_cargs = [new_clbits[num_clbits - old_clbits.index(c) - 1] for c in cargs]
circ._append(inst, new_qargs, new_cargs)
return circ
[documentos] def inverse(self):
"""Invert (take adjoint of) this circuit.
This is done by recursively inverting all gates.
Returns:
QuantumCircuit: the inverted circuit
Raises:
CircuitError: if the circuit cannot be inverted.
Examples:
input:
┌───┐
q_0: ┤ H ├─────■──────
└───┘┌────┴─────┐
q_1: ─────┤ RX(1.57) ├
└──────────┘
output:
┌───┐
q_0: ──────■──────┤ H ├
┌─────┴─────┐└───┘
q_1: ┤ RX(-1.57) ├─────
└───────────┘
"""
inverse_circ = QuantumCircuit(self.qubits, self.clbits,
*self.qregs, *self.cregs,
name=self.name + '_dg', global_phase=-self.global_phase)
for inst, qargs, cargs in reversed(self._data):
inverse_circ._append(inst.inverse(), qargs, cargs)
return inverse_circ
[documentos] def repeat(self, reps):
"""Repeat this circuit ``reps`` times.
Args:
reps (int): How often this circuit should be repeated.
Returns:
QuantumCircuit: A circuit containing ``reps`` repetitions of this circuit.
"""
repeated_circ = QuantumCircuit(self.qubits, self.clbits,
*self.qregs, *self.cregs,
name=self.name + '**{}'.format(reps))
# benefit of appending instructions: decomposing shows the subparts, i.e. the power
# is actually `reps` times this circuit, and it is currently much faster than `compose`.
if reps > 0:
try: # try to append as gate if possible to not disallow to_gate
inst = self.to_gate()
except QiskitError:
inst = self.to_instruction()
for _ in range(reps):
repeated_circ._append(inst, self.qubits, self.clbits)
return repeated_circ
[documentos] def power(self, power, matrix_power=False):
"""Raise this circuit to the power of ``power``.
If ``power`` is a positive integer and ``matrix_power`` is ``False``, this implementation
defaults to calling ``repeat``. Otherwise, if the circuit is unitary, the matrix is
computed to calculate the matrix power.
Args:
power (int): The power to raise this circuit to.
matrix_power (bool): If True, the circuit is converted to a matrix and then the
matrix power is computed. If False, and ``power`` is a positive integer,
the implementation defaults to ``repeat``.
Raises:
CircuitError: If the circuit needs to be converted to a gate but it is not unitary.
Returns:
QuantumCircuit: A circuit implementing this circuit raised to the power of ``power``.
"""
if power >= 0 and isinstance(power, numbers.Integral) and not matrix_power:
return self.repeat(power)
# attempt conversion to gate
if self.num_parameters > 0:
raise CircuitError('Cannot raise a parameterized circuit to a non-positive power '
'or matrix-power, please bind the free parameters: '
'{}'.format(self.parameters))
try:
gate = self.to_gate()
except QiskitError as ex:
raise CircuitError('The circuit contains non-unitary operations and cannot be '
'controlled. Note that no qiskit.circuit.Instruction objects may '
'be in the circuit for this operation.') from ex
power_circuit = QuantumCircuit(self.qubits, self.clbits, *self.qregs, *self.cregs)
power_circuit.append(gate.power(power), list(range(gate.num_qubits)))
return power_circuit
[documentos] def control(self, num_ctrl_qubits=1, label=None, ctrl_state=None):
"""Control this circuit on ``num_ctrl_qubits`` qubits.
Args:
num_ctrl_qubits (int): The number of control qubits.
label (str): An optional label to give the controlled operation for visualization.
ctrl_state (str or int): The control state in decimal or as a bitstring
(e.g. '111'). If None, use ``2**num_ctrl_qubits - 1``.
Returns:
QuantumCircuit: The controlled version of this circuit.
Raises:
CircuitError: If the circuit contains a non-unitary operation and cannot be controlled.
"""
try:
gate = self.to_gate()
except QiskitError as ex:
raise CircuitError('The circuit contains non-unitary operations and cannot be '
'controlled. Note that no qiskit.circuit.Instruction objects may '
'be in the circuit for this operation.') from ex
controlled_gate = gate.control(num_ctrl_qubits, label, ctrl_state)
control_qreg = QuantumRegister(num_ctrl_qubits)
controlled_circ = QuantumCircuit(control_qreg, self.qubits, *self.qregs,
name='c_{}'.format(self.name))
controlled_circ.append(controlled_gate, controlled_circ.qubits)
return controlled_circ
[documentos] @deprecate_function('The QuantumCircuit.combine() method is being deprecated. '
'Use the compose() method which is more flexible w.r.t '
'circuit register compatibility.')
def combine(self, rhs):
"""DEPRECATED - Returns rhs appended to self if self contains compatible registers.
Two circuits are compatible if they contain the same registers
or if they contain different registers with unique names. The
returned circuit will contain all unique registers between both
circuits.
Return self + rhs as a new object.
Args:
rhs (QuantumCircuit): The quantum circuit to append to the right hand side.
Returns:
QuantumCircuit: Returns a new QuantumCircuit object
Raises:
QiskitError: if the rhs circuit is not compatible
"""
# Check registers in LHS are compatible with RHS
self._check_compatible_regs(rhs)
# Make new circuit with combined registers
combined_qregs = copy.deepcopy(self.qregs)
combined_cregs = copy.deepcopy(self.cregs)
for element in rhs.qregs:
if element not in self.qregs:
combined_qregs.append(element)
for element in rhs.cregs:
if element not in self.cregs:
combined_cregs.append(element)
circuit = QuantumCircuit(*combined_qregs, *combined_cregs)
for instruction_context in itertools.chain(self.data, rhs.data):
circuit._append(*instruction_context)
circuit.global_phase = self.global_phase + rhs.global_phase
for gate, cals in rhs.calibrations.items():
for key, sched in cals.items():
circuit.add_calibration(gate, qubits=key[0], schedule=sched, params=key[1])
for gate, cals in self.calibrations.items():
for key, sched in cals.items():
circuit.add_calibration(gate, qubits=key[0], schedule=sched, params=key[1])
return circuit
[documentos] @deprecate_function('The QuantumCircuit.extend() method is being deprecated. Use the '
'compose() (potentially with the inplace=True argument) and tensor() '
'methods which are more flexible w.r.t circuit register compatibility.')
def extend(self, rhs):
"""DEPRECATED - Append QuantumCircuit to the RHS if it contains compatible registers.
Two circuits are compatible if they contain the same registers
or if they contain different registers with unique names. The
returned circuit will contain all unique registers between both
circuits.
Modify and return self.
Args:
rhs (QuantumCircuit): The quantum circuit to append to the right hand side.
Returns:
QuantumCircuit: Returns this QuantumCircuit object (which has been modified)
Raises:
QiskitError: if the rhs circuit is not compatible
"""
# Check registers in LHS are compatible with RHS
self._check_compatible_regs(rhs)
# Add new registers
for element in rhs.qregs:
if element not in self.qregs:
self.qregs.append(element)
self._qubits += element[:]
self._qubit_set.update(element[:])
for element in rhs.cregs:
if element not in self.cregs:
self.cregs.append(element)
self._clbits += element[:]
self._clbit_set.update(element[:])
# Copy the circuit data if rhs and self are the same, otherwise the data of rhs is
# appended to both self and rhs resulting in an infinite loop
data = rhs.data.copy() if rhs is self else rhs.data
# Add new gates
for instruction_context in data:
self._append(*instruction_context)
self.global_phase += rhs.global_phase
for gate, cals in rhs.calibrations.items():
for key, sched in cals.items():
self.add_calibration(gate, qubits=key[0], schedule=sched, params=key[1])
return self
[documentos] def compose(self, other, qubits=None, clbits=None, front=False, inplace=False):
"""Compose circuit with ``other`` circuit or instruction, optionally permuting wires.
``other`` can be narrower or of equal width to ``self``.
Args:
other (qiskit.circuit.Instruction or QuantumCircuit or BaseOperator):
(sub)circuit to compose onto self.
qubits (list[Qubit|int]): qubits of self to compose onto.
clbits (list[Clbit|int]): clbits of self to compose onto.
front (bool): If True, front composition will be performed (not implemented yet).
inplace (bool): If True, modify the object. Otherwise return composed circuit.
Returns:
QuantumCircuit: the composed circuit (returns None if inplace==True).
Raises:
CircuitError: if composing on the front.
QiskitError: if ``other`` is wider or there are duplicate edge mappings.
Examples::
lhs.compose(rhs, qubits=[3, 2], inplace=True)
.. parsed-literal::
┌───┐ ┌─────┐ ┌───┐
lqr_1_0: ───┤ H ├─── rqr_0: ──■──┤ Tdg ├ lqr_1_0: ───┤ H ├───────────────
├───┤ ┌─┴─┐└─────┘ ├───┤
lqr_1_1: ───┤ X ├─── rqr_1: ┤ X ├─────── lqr_1_1: ───┤ X ├───────────────
┌──┴───┴──┐ └───┘ ┌──┴───┴──┐┌───┐
lqr_1_2: ┤ U1(0.1) ├ + = lqr_1_2: ┤ U1(0.1) ├┤ X ├───────
└─────────┘ └─────────┘└─┬─┘┌─────┐
lqr_2_0: ─────■───── lqr_2_0: ─────■───────■──┤ Tdg ├
┌─┴─┐ ┌─┴─┐ └─────┘
lqr_2_1: ───┤ X ├─── lqr_2_1: ───┤ X ├───────────────
└───┘ └───┘
lcr_0: 0 ═══════════ lcr_0: 0 ═══════════════════════
lcr_1: 0 ═══════════ lcr_1: 0 ═══════════════════════
"""
if inplace:
dest = self
else:
dest = self.copy()
if not isinstance(other, QuantumCircuit):
if front:
dest.data.insert(0, (other, qubits, clbits))
else:
dest.append(other, qargs=qubits, cargs=clbits)
if inplace:
return None
return dest
instrs = other.data
if other.num_qubits > self.num_qubits or \
other.num_clbits > self.num_clbits:
raise CircuitError("Trying to compose with another QuantumCircuit "
"which has more 'in' edges.")
# number of qubits and clbits must match number in circuit or None
identity_qubit_map = dict(zip(other.qubits, self.qubits))
identity_clbit_map = dict(zip(other.clbits, self.clbits))
if qubits is None:
qubit_map = identity_qubit_map
elif len(qubits) != len(other.qubits):
raise CircuitError("Number of items in qubits parameter does not"
" match number of qubits in the circuit.")
else:
qubit_map = {other.qubits[i]: (self.qubits[q] if isinstance(q, int) else q)
for i, q in enumerate(qubits)}
if clbits is None:
clbit_map = identity_clbit_map
elif len(clbits) != len(other.clbits):
raise CircuitError("Number of items in clbits parameter does not"
" match number of clbits in the circuit.")
else:
clbit_map = {other.clbits[i]: (self.clbits[c] if isinstance(c, int) else c)
for i, c in enumerate(clbits)}
edge_map = {**qubit_map, **clbit_map} or {**identity_qubit_map, **identity_clbit_map}
mapped_instrs = []
for instr, qargs, cargs in instrs:
n_qargs = [edge_map[qarg] for qarg in qargs]
n_cargs = [edge_map[carg] for carg in cargs]
n_instr = instr.copy()
if instr.condition is not None:
from qiskit.dagcircuit import DAGCircuit # pylint: disable=cyclic-import
n_instr.condition = DAGCircuit._map_condition(edge_map, instr.condition, self.cregs)
mapped_instrs.append((n_instr, n_qargs, n_cargs))
if front:
dest._data = mapped_instrs + dest._data
else:
dest._data += mapped_instrs
if front:
dest._parameter_table.clear()
for instr, _, _ in dest._data:
dest._update_parameter_table(instr)
else:
# just append new parameters
for instr, _, _ in mapped_instrs:
dest._update_parameter_table(instr)
for gate, cals in other.calibrations.items():
dest._calibrations[gate].update(cals)
dest.global_phase += other.global_phase
if inplace:
return None
return dest
[documentos] def tensor(self, other, inplace=False):
"""Tensor ``self`` with ``other``.
Remember that in the little-endian convention the leftmost operation will be at the bottom
of the circuit. See also
[the docs](qiskit.org/documentation/tutorials/circuits/3_summary_of_quantum_operations.html)
for more information.
.. parsed-literal::
┌────────┐ ┌─────┐ ┌─────┐
q_0: ┤ bottom ├ ⊗ q_0: ┤ top ├ = q_0: ─┤ top ├──
└────────┘ └─────┘ ┌┴─────┴─┐
q_1: ┤ bottom ├
└────────┘
Args:
other (QuantumCircuit): The other circuit to tensor this circuit with.
inplace (bool): If True, modify the object. Otherwise return composed circuit.
Examples:
.. jupyter-execute::
from qiskit import QuantumCircuit
top = QuantumCircuit(1)
top.x(0);
bottom = QuantumCircuit(2)
bottom.cry(0.2, 0, 1);
tensored = bottom.tensor(top)
print(tensored.draw())
Returns:
QuantumCircuit: The tensored circuit (returns None if inplace==True).
"""
num_qubits = self.num_qubits + other.num_qubits
num_clbits = self.num_clbits + other.num_clbits
# If a user defined both circuits with via register sizes and not with named registers
# (e.g. QuantumCircuit(2, 2)) then we have a naming collision, as the registers are by
# default called "q" resp. "c". To still allow tensoring we define new registers of the
# correct sizes.
if len(self.qregs) == len(other.qregs) == 1 and \
self.qregs[0].name == other.qregs[0].name == 'q':
# check if classical registers are in the circuit
if num_clbits > 0:
dest = QuantumCircuit(num_qubits, num_clbits)
else:
dest = QuantumCircuit(num_qubits)
# handle case if ``measure_all`` was called on both circuits, in which case the
# registers are both named "meas"
elif len(self.cregs) == len(other.cregs) == 1 and \
self.cregs[0].name == other.cregs[0].name == 'meas':
cr = ClassicalRegister(self.num_clbits + other.num_clbits, 'meas')
dest = QuantumCircuit(*other.qregs, *self.qregs, cr)
# Now we don't have to handle any more cases arising from special implicit naming
else:
dest = QuantumCircuit(other.qubits, self.qubits, other.clbits, self.clbits,
*other.qregs, *self.qregs, *other.cregs, *self.cregs)
# compose self onto the output, and then other
dest.compose(other, range(other.num_qubits), range(other.num_clbits), inplace=True)
dest.compose(self, range(other.num_qubits, num_qubits),
range(other.num_clbits, num_clbits), inplace=True)
# Replace information from tensored circuit into self when inplace = True
if inplace:
self.__dict__.update(dest.__dict__)
return None
return dest
@property
def qubits(self):
"""
Returns a list of quantum bits in the order that the registers were added.
"""
return self._qubits
@property
def clbits(self):
"""
Returns a list of classical bits in the order that the registers were added.
"""
return self._clbits
@property
def ancillas(self):
"""
Returns a list of ancilla bits in the order that the registers were added.
"""
return self._ancillas
@deprecate_function('The QuantumCircuit.__add__() method is being deprecated.'
'Use the compose() method which is more flexible w.r.t '
'circuit register compatibility.')
def __add__(self, rhs):
"""Overload + to implement self.combine."""
return self.combine(rhs)
@deprecate_function('The QuantumCircuit.__iadd__() method is being deprecated. Use the '
'compose() (potentially with the inplace=True argument) and tensor() '
'methods which are more flexible w.r.t circuit register compatibility.')
def __iadd__(self, rhs):
"""Overload += to implement self.extend."""
return self.extend(rhs)
def __and__(self, rhs):
"""Overload & to implement self.compose."""
return self.compose(rhs)
def __iand__(self, rhs):
"""Overload &= to implement self.compose in place."""
self.compose(rhs, inplace=True)
return self
def __xor__(self, top):
"""Overload ^ to implement self.tensor."""
return self.tensor(top)
def __ixor__(self, top):
"""Overload ^= to implement self.tensor in place."""
self.tensor(top, inplace=True)
return self
def __len__(self):
"""Return number of operations in circuit."""
return len(self._data)
def __getitem__(self, item):
"""Return indexed operation."""
return self._data[item]
[documentos] @staticmethod
def cast(value, _type):
"""Best effort to cast value to type. Otherwise, returns the value."""
try:
return _type(value)
except (ValueError, TypeError):
return value
@staticmethod
def _bit_argument_conversion(bit_representation, in_array):
ret = None
try:
if isinstance(bit_representation, Bit):
# circuit.h(qr[0]) -> circuit.h([qr[0]])
ret = [bit_representation]
elif isinstance(bit_representation, Register):
# circuit.h(qr) -> circuit.h([qr[0], qr[1]])
ret = bit_representation[:]
elif isinstance(QuantumCircuit.cast(bit_representation, int), int):
# circuit.h(0) -> circuit.h([qr[0]])
ret = [in_array[bit_representation]]
elif isinstance(bit_representation, slice):
# circuit.h(slice(0,2)) -> circuit.h([qr[0], qr[1]])
ret = in_array[bit_representation]
elif isinstance(bit_representation, list) and \
all(isinstance(bit, Bit) for bit in bit_representation):
# circuit.h([qr[0], qr[1]]) -> circuit.h([qr[0], qr[1]])
ret = bit_representation
elif isinstance(QuantumCircuit.cast(bit_representation, list), (range, list)):
# circuit.h([0, 1]) -> circuit.h([qr[0], qr[1]])
# circuit.h(range(0,2)) -> circuit.h([qr[0], qr[1]])
# circuit.h([qr[0],1]) -> circuit.h([qr[0], qr[1]])
ret = [index if isinstance(index, Bit) else in_array[
index] for index in bit_representation]
else:
raise CircuitError('Not able to expand a %s (%s)' % (bit_representation,
type(bit_representation)))
except IndexError as ex:
raise CircuitError('Index out of range.') from ex
except TypeError as ex:
raise CircuitError(
f'Type error handling {bit_representation} ({type(bit_representation)})'
) from ex
return ret
[documentos] def qbit_argument_conversion(self, qubit_representation):
"""
Converts several qubit representations (such as indexes, range, etc.)
into a list of qubits.
Args:
qubit_representation (Object): representation to expand
Returns:
List(tuple): Where each tuple is a qubit.
"""
return QuantumCircuit._bit_argument_conversion(qubit_representation, self.qubits)
[documentos] def cbit_argument_conversion(self, clbit_representation):
"""
Converts several classical bit representations (such as indexes, range, etc.)
into a list of classical bits.
Args:
clbit_representation (Object): representation to expand
Returns:
List(tuple): Where each tuple is a classical bit.
"""
return QuantumCircuit._bit_argument_conversion(clbit_representation, self.clbits)
[documentos] def append(self, instruction, qargs=None, cargs=None):
"""Append one or more instructions to the end of the circuit, modifying
the circuit in place. Expands qargs and cargs.
Args:
instruction (qiskit.circuit.Instruction): Instruction instance to append
qargs (list(argument)): qubits to attach instruction to
cargs (list(argument)): clbits to attach instruction to
Returns:
qiskit.circuit.Instruction: a handle to the instruction that was just added
Raises:
CircuitError: if object passed is a subclass of Instruction
CircuitError: if object passed is neither subclass nor an instance of Instruction
"""
# Convert input to instruction
if not isinstance(instruction, Instruction) and not hasattr(instruction, 'to_instruction'):
if issubclass(instruction, Instruction):
raise CircuitError('Object is a subclass of Instruction, please add () to '
'pass an instance of this object.')
raise CircuitError('Object to append must be an Instruction or '
'have a to_instruction() method.')
if not isinstance(instruction, Instruction) and hasattr(instruction, "to_instruction"):
instruction = instruction.to_instruction()
# Make copy of parameterized gate instances
if hasattr(instruction, 'params'):
is_parameter = any(isinstance(param, Parameter) for param in instruction.params)
if is_parameter:
instruction = copy.deepcopy(instruction)
expanded_qargs = [self.qbit_argument_conversion(qarg) for qarg in qargs or []]
expanded_cargs = [self.cbit_argument_conversion(carg) for carg in cargs or []]
instructions = InstructionSet()
for (qarg, carg) in instruction.broadcast_arguments(expanded_qargs, expanded_cargs):
instructions.add(self._append(instruction, qarg, carg), qarg, carg)
return instructions
def _append(self, instruction, qargs, cargs):
"""Append an instruction to the end of the circuit, modifying
the circuit in place.
Args:
instruction (Instruction or Operator): Instruction instance to append
qargs (list(tuple)): qubits to attach instruction to
cargs (list(tuple)): clbits to attach instruction to
Returns:
Instruction: a handle to the instruction that was just added
Raises:
CircuitError: if the gate is of a different shape than the wires
it is being attached to.
"""
if not isinstance(instruction, Instruction):
raise CircuitError('object is not an Instruction.')
# do some compatibility checks
self._check_dups(qargs)
self._check_qargs(qargs)
self._check_cargs(cargs)
# add the instruction onto the given wires
instruction_context = instruction, qargs, cargs
self._data.append(instruction_context)
self._update_parameter_table(instruction)
# mark as normal circuit if a new instruction is added
self.duration = None
self.unit = 'dt'
return instruction
def _update_parameter_table(self, instruction):
for param_index, param in enumerate(instruction.params):
if isinstance(param, ParameterExpression):
current_parameters = self._parameter_table
for parameter in param.parameters:
if parameter in current_parameters:
if not self._check_dup_param_spec(self._parameter_table[parameter],
instruction, param_index):
self._parameter_table[parameter].append((instruction, param_index))
else:
if parameter.name in self._parameter_table.get_names():
raise CircuitError(
'Name conflict on adding parameter: {}'.format(parameter.name))
self._parameter_table[parameter] = [(instruction, param_index)]
# clear cache if new parameter is added
self._parameters = None
return instruction
def _check_dup_param_spec(self, parameter_spec_list, instruction, param_index):
for spec in parameter_spec_list:
if spec[0] is instruction and spec[1] == param_index:
return True
return False
[documentos] def add_register(self, *regs):
"""Add registers."""
if not regs:
return
if any(isinstance(reg, int) for reg in regs):
# QuantumCircuit defined without registers
if len(regs) == 1 and isinstance(regs[0], int):
# QuantumCircuit with anonymous quantum wires e.g. QuantumCircuit(2)
regs = (QuantumRegister(regs[0], 'q'),)
elif len(regs) == 2 and all(isinstance(reg, int) for reg in regs):
# QuantumCircuit with anonymous wires e.g. QuantumCircuit(2, 3)
regs = (QuantumRegister(regs[0], 'q'), ClassicalRegister(regs[1], 'c'))
else:
raise CircuitError("QuantumCircuit parameters can be Registers or Integers."
" If Integers, up to 2 arguments. QuantumCircuit was called"
" with %s." % (regs,))
for register in regs:
if (
isinstance(register, Register)
and any(register.name == reg.name for reg in self.qregs + self.cregs)
):
raise CircuitError("register name \"%s\" already exists"
% register.name)
if isinstance(register, AncillaRegister):
self._ancillas.extend(register)
if isinstance(register, QuantumRegister):
self.qregs.append(register)
new_bits = [bit for bit in register
if bit not in self._qubit_set]
self._qubits.extend(new_bits)
self._qubit_set.update(new_bits)
elif isinstance(register, ClassicalRegister):
self.cregs.append(register)
new_bits = [bit for bit in register
if bit not in self._clbit_set]
self._clbits.extend(new_bits)
self._clbit_set.update(new_bits)
elif isinstance(register, list):
self.add_bits(register)
else:
raise CircuitError("expected a register")
[documentos] def add_bits(self, bits):
"""Add Bits to the circuit."""
duplicate_bits = set(self.qubits + self.clbits).intersection(bits)
if duplicate_bits:
raise CircuitError("Attempted to add bits found already in circuit: "
"{}".format(duplicate_bits))
for bit in bits:
if isinstance(bit, AncillaQubit):
self._ancillas.append(bit)
if isinstance(bit, Qubit):
self._qubits.append(bit)
self._qubit_set.add(bit)
elif isinstance(bit, Clbit):
self._clbits.append(bit)
self._clbit_set.add(bit)
else:
raise CircuitError("Expected an instance of Qubit, Clbit, or "
"AncillaQubit, but was passed {}".format(bit))
def _check_dups(self, qubits):
"""Raise exception if list of qubits contains duplicates."""
squbits = set(qubits)
if len(squbits) != len(qubits):
raise CircuitError("duplicate qubit arguments")
def _check_qargs(self, qargs):
"""Raise exception if a qarg is not in this circuit or bad format."""
if not all(isinstance(i, Qubit) for i in qargs):
raise CircuitError("qarg is not a Qubit")
if not set(qargs).issubset(self._qubit_set):
raise CircuitError("qargs not in this circuit")
def _check_cargs(self, cargs):
"""Raise exception if clbit is not in this circuit or bad format."""
if not all(isinstance(i, Clbit) for i in cargs):
raise CircuitError("carg is not a Clbit")
if not set(cargs).issubset(self._clbit_set):
raise CircuitError("cargs not in this circuit")
[documentos] def to_instruction(self, parameter_map=None):
"""Create an Instruction out of this circuit.
Args:
parameter_map(dict): For parameterized circuits, a mapping from
parameters in the circuit to parameters to be used in the
instruction. If None, existing circuit parameters will also
parameterize the instruction.
Returns:
qiskit.circuit.Instruction: a composite instruction encapsulating this circuit
(can be decomposed back)
"""
from qiskit.converters.circuit_to_instruction import circuit_to_instruction
return circuit_to_instruction(self, parameter_map)
[documentos] def to_gate(self, parameter_map=None, label=None):
"""Create a Gate out of this circuit.
Args:
parameter_map(dict): For parameterized circuits, a mapping from
parameters in the circuit to parameters to be used in the
gate. If None, existing circuit parameters will also
parameterize the gate.
label (str): Optional gate label.
Returns:
Gate: a composite gate encapsulating this circuit
(can be decomposed back)
"""
from qiskit.converters.circuit_to_gate import circuit_to_gate
return circuit_to_gate(self, parameter_map, label=label)
[documentos] def decompose(self):
"""Call a decomposition pass on this circuit,
to decompose one level (shallow decompose).
Returns:
QuantumCircuit: a circuit one level decomposed
"""
# pylint: disable=cyclic-import
from qiskit.transpiler.passes.basis.decompose import Decompose
from qiskit.converters.circuit_to_dag import circuit_to_dag
from qiskit.converters.dag_to_circuit import dag_to_circuit
pass_ = Decompose()
decomposed_dag = pass_.run(circuit_to_dag(self))
return dag_to_circuit(decomposed_dag)
def _check_compatible_regs(self, rhs):
"""Raise exception if the circuits are defined on incompatible registers"""
list1 = self.qregs + self.cregs
list2 = rhs.qregs + rhs.cregs
for element1 in list1:
for element2 in list2:
if element2.name == element1.name:
if element1 != element2:
raise CircuitError("circuits are not compatible:"
f" registers {element1} and {element2} not compatible")
@staticmethod
def _get_composite_circuit_qasm_from_instruction(instruction):
"""Returns OpenQASM string composite circuit given an instruction.
The given instruction should be the result of composite_circuit.to_instruction()."""
gate_parameters = ",".join(["param%i" % num for num in range(len(instruction.params))])
qubit_parameters = ",".join(["q%i" % num for num in range(instruction.num_qubits)])
composite_circuit_gates = ""
definition = instruction.definition
definition_bit_labels = {bit: idx
for bits in (definition.qubits, definition.clbits)
for idx, bit in enumerate(bits)}
for data, qargs, _ in definition:
gate_qargs = ",".join(["q%i" % index
for index in [definition_bit_labels[qubit] for qubit in qargs]])
composite_circuit_gates += "%s %s; " % (data.qasm(), gate_qargs)
if composite_circuit_gates:
composite_circuit_gates = composite_circuit_gates.rstrip(' ')
if gate_parameters:
qasm_string = "gate %s(%s) %s { %s }" % (instruction.name, gate_parameters,
qubit_parameters, composite_circuit_gates)
else:
qasm_string = "gate %s %s { %s }" % (instruction.name, qubit_parameters,
composite_circuit_gates)
return qasm_string
[documentos] def qasm(self, formatted=False, filename=None):
"""Return OpenQASM string.
Args:
formatted (bool): Return formatted Qasm string.
filename (str): Save Qasm to file with name 'filename'.
Returns:
str: If formatted=False.
Raises:
ImportError: If pygments is not installed and ``formatted`` is
``True``.
QasmError: If circuit has free parameters.
"""
from qiskit.circuit.controlledgate import ControlledGate
if self.num_parameters > 0:
raise QasmError('Cannot represent circuits with unbound parameters in OpenQASM 2.')
existing_gate_names = ['ch', 'cp', 'cx', 'cy', 'cz', 'crx', 'cry', 'crz', 'ccx', 'cswap',
'csx', 'cu', 'cu1', 'cu3', 'dcx', 'h', 'i', 'id', 'iden', 'iswap',
'ms', 'p', 'r', 'rx', 'rxx', 'ry', 'ryy', 'rz', 'rzx', 'rzz', 's',
'sdg', 'swap', 'sx', 'x', 'y', 'z', 't', 'tdg', 'u', 'u1', 'u2',
'u3']
existing_composite_circuits = []
string_temp = self.header + "\n"
string_temp += self.extension_lib + "\n"
for register in self.qregs:
string_temp += register.qasm() + "\n"
for register in self.cregs:
string_temp += register.qasm() + "\n"
qreg_bits = set(bit for reg in self.qregs for bit in reg)
creg_bits = set(bit for reg in self.cregs for bit in reg)
regless_qubits = []
regless_clbits = []
if set(self.qubits) != qreg_bits:
regless_qubits = [bit for bit in self.qubits if bit not in qreg_bits]
string_temp += "qreg %s[%d];\n" % ('regless', len(regless_qubits))
if set(self.clbits) != creg_bits:
regless_clbits = [bit for bit in self.clbits if bit not in creg_bits]
string_temp += "creg %s[%d];\n" % ('regless', len(regless_clbits))
unitary_gates = []
bit_labels = {bit: "%s[%d]" % (reg.name, idx)
for reg in self.qregs + self.cregs
for (idx, bit) in enumerate(reg)}
bit_labels.update({bit: "regless[%d]" % idx
for reg in (regless_qubits, regless_clbits)
for idx, bit in enumerate(reg)})
for instruction, qargs, cargs in self._data:
if instruction.name == 'measure':
qubit = qargs[0]
clbit = cargs[0]
string_temp += "%s %s -> %s;\n" % (instruction.qasm(),
bit_labels[qubit],
bit_labels[clbit])
# If instruction is a root gate or a root instruction (in that case, compositive)
elif (type(instruction) in # pylint: disable=unidiomatic-typecheck
[Gate, Instruction] or
(isinstance(instruction, ControlledGate) and instruction._open_ctrl)):
if instruction not in existing_composite_circuits:
if instruction.name in existing_gate_names:
old_name = instruction.name
instruction.name += "_" + str(id(instruction))
warnings.warn("A gate named {} already exists. "
"We have renamed "
"your gate to {}".format(old_name, instruction.name))
# Get qasm of composite circuit
qasm_string = self._get_composite_circuit_qasm_from_instruction(instruction)
# Insert composite circuit qasm definition right after header and extension lib
string_temp = string_temp.replace(self.extension_lib,
"%s\n%s" % (self.extension_lib,
qasm_string))
existing_composite_circuits.append(instruction)
existing_gate_names.append(instruction.name)
# Insert qasm representation of the original instruction
string_temp += "%s %s;\n" % (instruction.qasm(),
",".join([bit_labels[j]
for j in qargs + cargs]))
else:
string_temp += "%s %s;\n" % (instruction.qasm(),
",".join([bit_labels[j]
for j in qargs + cargs]))
if instruction.name == 'unitary':
unitary_gates.append(instruction)
# this resets them, so if another call to qasm() is made the gate def is added again
for gate in unitary_gates:
gate._qasm_def_written = False
if filename:
with open(filename, 'w+') as file:
file.write(string_temp)
file.close()
if formatted:
if not HAS_PYGMENTS:
raise ImportError("To use the formatted output pygments>2.4 "
"must be installed. To install pygments run "
'"pip install pygments".')
code = pygments.highlight(string_temp,
OpenQASMLexer(),
Terminal256Formatter(style=QasmTerminalStyle))
print(code)
return None
else:
return string_temp
[documentos] def draw(self, output=None, scale=None, filename=None, style=None,
interactive=False, plot_barriers=True,
reverse_bits=False, justify=None, vertical_compression='medium', idle_wires=True,
with_layout=True, fold=None, ax=None, initial_state=False, cregbundle=True):
"""Draw the quantum circuit. Use the output parameter to choose the drawing format:
**text**: ASCII art TextDrawing that can be printed in the console.
**matplotlib**: images with color rendered purely in Python.
**latex**: high-quality images compiled via latex.
**latex_source**: raw uncompiled latex output.
Args:
output (str): select the output method to use for drawing the circuit.
Valid choices are ``text``, ``mpl``, ``latex``, ``latex_source``.
By default the `text` drawer is used unless the user config file
(usually ``~/.qiskit/settings.conf``) has an alternative backend set
as the default. For example, ``circuit_drawer = latex``. If the output
kwarg is set, that backend will always be used over the default in
the user config file.
scale (float): scale of image to draw (shrink if < 1.0). Only used by
the `mpl`, `latex` and `latex_source` outputs. Defaults to 1.0.
filename (str): file path to save image to. Defaults to None.
style (dict or str): dictionary of style or file name of style json file.
This option is only used by the `mpl` output type.
If `style` is a str, it is used as the path to a json file
which contains a style dict. The file will be opened, parsed, and
then any style elements in the dict will replace the default values
in the input dict. A file to be loaded must end in ``.json``, but
the name entered here can omit ``.json``. For example,
``style='iqx.json'`` or ``style='iqx'``.
If `style` is a dict and the ``'name'`` key is set, that name
will be used to load a json file, followed by loading the other
items in the style dict. For example, ``style={'name': 'iqx'}``.
If `style` is not a str and `name` is not a key in the style dict,
then the default value from the user config file (usually
``~/.qiskit/settings.conf``) will be used, for example,
``circuit_mpl_style = iqx``.
If none of these are set, the `default` style will be used.
The search path for style json files can be specified in the user
config, for example,
``circuit_mpl_style_path = /home/user/styles:/home/user``.
See: :class:`~qiskit.visualization.qcstyle.DefaultStyle` for more
information on the contents.
interactive (bool): when set to true, show the circuit in a new window
(for `mpl` this depends on the matplotlib backend being used
supporting this). Note when used with either the `text` or the
`latex_source` output type this has no effect and will be silently
ignored. Defaults to False.
reverse_bits (bool): when set to True, reverse the bit order inside
registers for the output visualization. Defaults to False.
plot_barriers (bool): enable/disable drawing barriers in the output
circuit. Defaults to True.
justify (string): options are ``left``, ``right`` or ``none``. If
anything else is supplied, it defaults to left justified. It refers
to where gates should be placed in the output circuit if there is
an option. ``none`` results in each gate being placed in its own
column.
vertical_compression (string): ``high``, ``medium`` or ``low``. It
merges the lines generated by the `text` output so the drawing
will take less vertical room. Default is ``medium``. Only used by
the `text` output, will be silently ignored otherwise.
idle_wires (bool): include idle wires (wires with no circuit elements)
in output visualization. Default is True.
with_layout (bool): include layout information, with labels on the
physical layout. Default is True.
fold (int): sets pagination. It can be disabled using -1. In `text`,
sets the length of the lines. This is useful when the drawing does
not fit in the console. If None (default), it will try to guess the
console width using ``shutil.get_terminal_size()``. However, if
running in jupyter, the default line length is set to 80 characters.
In `mpl`, it is the number of (visual) layers before folding.
Default is 25.
ax (matplotlib.axes.Axes): Only used by the `mpl` backend. An optional
Axes object to be used for the visualization output. If none is
specified, a new matplotlib Figure will be created and used.
Additionally, if specified there will be no returned Figure since
it is redundant.
initial_state (bool): optional. Adds ``|0>`` in the beginning of the wire.
Default is False.
cregbundle (bool): optional. If set True, bundle classical registers.
Default is True.
Returns:
:class:`TextDrawing` or :class:`matplotlib.figure` or :class:`PIL.Image` or
:class:`str`:
* `TextDrawing` (output='text')
A drawing that can be printed as ascii art.
* `matplotlib.figure.Figure` (output='mpl')
A matplotlib figure object for the circuit diagram.
* `PIL.Image` (output='latex')
An in-memory representation of the image of the circuit diagram.
* `str` (output='latex_source')
The LaTeX source code for visualizing the circuit diagram.
Raises:
VisualizationError: when an invalid output method is selected
ImportError: when the output methods requires non-installed libraries.
Example:
.. jupyter-execute::
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit
from qiskit.tools.visualization import circuit_drawer
q = QuantumRegister(1)
c = ClassicalRegister(1)
qc = QuantumCircuit(q, c)
qc.h(q)
qc.measure(q, c)
qc.draw(output='mpl', style={'backgroundcolor': '#EEEEEE'})
"""
# pylint: disable=cyclic-import
from qiskit.visualization import circuit_drawer
return circuit_drawer(self, scale=scale,
filename=filename, style=style,
output=output,
interactive=interactive,
plot_barriers=plot_barriers,
reverse_bits=reverse_bits,
justify=justify,
vertical_compression=vertical_compression,
idle_wires=idle_wires,
with_layout=with_layout,
fold=fold,
ax=ax,
initial_state=initial_state,
cregbundle=cregbundle)
[documentos] def size(self):
"""Returns total number of gate operations in circuit.
Returns:
int: Total number of gate operations.
"""
gate_ops = 0
for instr, _, _ in self._data:
if not instr._directive:
gate_ops += 1
return gate_ops
[documentos] def depth(self):
"""Return circuit depth (i.e., length of critical path).
This does not include compiler or simulator directives
such as 'barrier' or 'snapshot'.
Returns:
int: Depth of circuit.
Notes:
The circuit depth and the DAG depth need not be the
same.
"""
# Assign each bit in the circuit a unique integer
# to index into op_stack.
bit_indices = {bit: idx
for idx, bit in enumerate(self.qubits + self.clbits)}
# If no bits, return 0
if not bit_indices:
return 0
# A list that holds the height of each qubit
# and classical bit.
op_stack = [0] * len(bit_indices)
# Here we are playing a modified version of
# Tetris where we stack gates, but multi-qubit
# gates, or measurements have a block for each
# qubit or cbit that are connected by a virtual
# line so that they all stacked at the same depth.
# Conditional gates act on all cbits in the register
# they are conditioned on.
# We treat barriers or snapshots different as
# They are transpiler and simulator directives.
# The max stack height is the circuit depth.
for instr, qargs, cargs in self._data:
levels = []
reg_ints = []
# If count then add one to stack heights
count = True
if instr._directive:
count = False
for ind, reg in enumerate(qargs + cargs):
# Add to the stacks of the qubits and
# cbits used in the gate.
reg_ints.append(bit_indices[reg])
if count:
levels.append(op_stack[reg_ints[ind]] + 1)
else:
levels.append(op_stack[reg_ints[ind]])
# Assuming here that there is no conditional
# snapshots or barriers ever.
if instr.condition:
# Controls operate over all bits in the
# classical register they use.
for cbit in instr.condition[0]:
idx = bit_indices[cbit]
if idx not in reg_ints:
reg_ints.append(idx)
levels.append(op_stack[idx] + 1)
max_level = max(levels)
for ind in reg_ints:
op_stack[ind] = max_level
return max(op_stack)
[documentos] def width(self):
"""Return number of qubits plus clbits in circuit.
Returns:
int: Width of circuit.
"""
return len(self.qubits) + len(self.clbits)
@property
def num_qubits(self):
"""Return number of qubits."""
return len(self.qubits)
@property
def num_ancillas(self):
"""Return the number of ancilla qubits."""
return len(self.ancillas)
@property
def num_clbits(self):
"""Return number of classical bits."""
return len(self.clbits)
[documentos] def count_ops(self):
"""Count each operation kind in the circuit.
Returns:
OrderedDict: a breakdown of how many operations of each kind, sorted by amount.
"""
count_ops = {}
for instr, _, _ in self._data:
count_ops[instr.name] = count_ops.get(instr.name, 0) + 1
return OrderedDict(sorted(count_ops.items(), key=lambda kv: kv[1], reverse=True))
[documentos] def num_nonlocal_gates(self):
"""Return number of non-local gates (i.e. involving 2+ qubits).
Conditional nonlocal gates are also included.
"""
multi_qubit_gates = 0
for instr, _, _ in self._data:
if instr.num_qubits > 1 and not instr._directive:
multi_qubit_gates += 1
return multi_qubit_gates
[documentos] def num_connected_components(self, unitary_only=False):
"""How many non-entangled subcircuits can the circuit be factored to.
Args:
unitary_only (bool): Compute only unitary part of graph.
Returns:
int: Number of connected components in circuit.
"""
# Convert registers to ints (as done in depth).
bits = self.qubits if unitary_only else (self.qubits + self.clbits)
bit_indices = {bit: idx
for idx, bit in enumerate(bits)}
# Start with each qubit or cbit being its own subgraph.
sub_graphs = [[bit] for bit in range(len(bit_indices))]
num_sub_graphs = len(sub_graphs)
# Here we are traversing the gates and looking to see
# which of the sub_graphs the gate joins together.
for instr, qargs, cargs in self._data:
if unitary_only:
args = qargs
num_qargs = len(args)
else:
args = qargs + cargs
num_qargs = len(args) + (1 if instr.condition else 0)
if num_qargs >= 2 and not instr._directive:
graphs_touched = []
num_touched = 0
# Controls necessarily join all the cbits in the
# register that they use.
if instr.condition and not unitary_only:
creg = instr.condition[0]
for bit in creg:
idx = bit_indices[bit]
for k in range(num_sub_graphs):
if idx in sub_graphs[k]:
graphs_touched.append(k)
num_touched += 1
break
for item in args:
reg_int = bit_indices[item]
for k in range(num_sub_graphs):
if reg_int in sub_graphs[k]:
if k not in graphs_touched:
graphs_touched.append(k)
num_touched += 1
break
# If the gate touches more than one subgraph
# join those graphs together and return
# reduced number of subgraphs
if num_touched > 1:
connections = []
for idx in graphs_touched:
connections.extend(sub_graphs[idx])
_sub_graphs = []
for idx in range(num_sub_graphs):
if idx not in graphs_touched:
_sub_graphs.append(sub_graphs[idx])
_sub_graphs.append(connections)
sub_graphs = _sub_graphs
num_sub_graphs -= (num_touched - 1)
# Cannot go lower than one so break
if num_sub_graphs == 1:
break
return num_sub_graphs
[documentos] def num_unitary_factors(self):
"""Computes the number of tensor factors in the unitary
(quantum) part of the circuit only.
"""
return self.num_connected_components(unitary_only=True)
[documentos] def num_tensor_factors(self):
"""Computes the number of tensor factors in the unitary
(quantum) part of the circuit only.
Notes:
This is here for backwards compatibility, and will be
removed in a future release of Qiskit. You should call
`num_unitary_factors` instead.
"""
return self.num_unitary_factors()
[documentos] def copy(self, name=None):
"""Copy the circuit.
Args:
name (str): name to be given to the copied circuit. If None, then the name stays the same
Returns:
QuantumCircuit: a deepcopy of the current circuit, with the specified name
"""
cpy = copy.copy(self)
# copy registers correctly, in copy.copy they are only copied via reference
cpy.qregs = self.qregs.copy()
cpy.cregs = self.cregs.copy()
cpy._qubits = self._qubits.copy()
cpy._clbits = self._clbits.copy()
cpy._qubit_set = self._qubit_set.copy()
cpy._clbit_set = self._clbit_set.copy()
instr_instances = {id(instr): instr
for instr, _, __ in self._data}
instr_copies = {id_: instr.copy()
for id_, instr in instr_instances.items()}
cpy._parameter_table = ParameterTable({
param: [(instr_copies[id(instr)], param_index)
for instr, param_index in self._parameter_table[param]]
for param in self._parameter_table
})
cpy._data = [(instr_copies[id(inst)], qargs.copy(), cargs.copy())
for inst, qargs, cargs in self._data]
cpy._calibrations = copy.deepcopy(self._calibrations)
cpy._metadata = copy.deepcopy(self._metadata)
if name:
cpy.name = name
return cpy
def _create_creg(self, length, name):
""" Creates a creg, checking if ClassicalRegister with same name exists
"""
if name in [creg.name for creg in self.cregs]:
save_prefix = ClassicalRegister.prefix
ClassicalRegister.prefix = name
new_creg = ClassicalRegister(length)
ClassicalRegister.prefix = save_prefix
else:
new_creg = ClassicalRegister(length, name)
return new_creg
def _create_qreg(self, length, name):
""" Creates a qreg, checking if QuantumRegister with same name exists
"""
if name in [qreg.name for qreg in self.qregs]:
save_prefix = QuantumRegister.prefix
QuantumRegister.prefix = name
new_qreg = QuantumRegister(length)
QuantumRegister.prefix = save_prefix
else:
new_qreg = QuantumRegister(length, name)
return new_qreg
[documentos] def measure_active(self, inplace=True):
"""Adds measurement to all non-idle qubits. Creates a new ClassicalRegister with
a size equal to the number of non-idle qubits being measured.
Returns a new circuit with measurements if `inplace=False`.
Args:
inplace (bool): All measurements inplace or return new circuit.
Returns:
QuantumCircuit: Returns circuit with measurements when `inplace = False`.
"""
from qiskit.converters.circuit_to_dag import circuit_to_dag
if inplace:
circ = self
else:
circ = self.copy()
dag = circuit_to_dag(circ)
qubits_to_measure = [qubit for qubit in circ.qubits if qubit not in dag.idle_wires()]
new_creg = circ._create_creg(len(qubits_to_measure), 'measure')
circ.add_register(new_creg)
circ.barrier()
circ.measure(qubits_to_measure, new_creg)
if not inplace:
return circ
else:
return None
[documentos] def measure_all(self, inplace=True):
"""Adds measurement to all qubits. Creates a new ClassicalRegister with a
size equal to the number of qubits being measured.
Returns a new circuit with measurements if `inplace=False`.
Args:
inplace (bool): All measurements inplace or return new circuit.
Returns:
QuantumCircuit: Returns circuit with measurements when `inplace = False`.
"""
if inplace:
circ = self
else:
circ = self.copy()
new_creg = circ._create_creg(len(circ.qubits), 'meas')
circ.add_register(new_creg)
circ.barrier()
circ.measure(circ.qubits, new_creg)
if not inplace:
return circ
else:
return None
[documentos] def remove_final_measurements(self, inplace=True):
"""Removes final measurement on all qubits if they are present.
Deletes the ClassicalRegister that was used to store the values from these measurements
if it is idle.
Returns a new circuit without measurements if `inplace=False`.
Args:
inplace (bool): All measurements removed inplace or return new circuit.
Returns:
QuantumCircuit: Returns circuit with measurements removed when `inplace = False`.
"""
# pylint: disable=cyclic-import
from qiskit.transpiler.passes import RemoveFinalMeasurements
from qiskit.converters import circuit_to_dag
if inplace:
circ = self
else:
circ = self.copy()
dag = circuit_to_dag(circ)
remove_final_meas = RemoveFinalMeasurements()
new_dag = remove_final_meas.run(dag)
# Set circ cregs and instructions to match the new DAGCircuit's
circ.data.clear()
circ._parameter_table.clear()
circ.cregs = list(new_dag.cregs.values())
for node in new_dag.topological_op_nodes():
# Get arguments for classical condition (if any)
inst = node.op.copy()
inst.condition = node.condition
circ.append(inst, node.qargs, node.cargs)
circ.clbits.clear()
if not inplace:
return circ
else:
return None
[documentos] @staticmethod
def from_qasm_file(path):
"""Take in a QASM file and generate a QuantumCircuit object.
Args:
path (str): Path to the file for a QASM program
Return:
QuantumCircuit: The QuantumCircuit object for the input QASM
"""
qasm = Qasm(filename=path)
return _circuit_from_qasm(qasm)
[documentos] @staticmethod
def from_qasm_str(qasm_str):
"""Take in a QASM string and generate a QuantumCircuit object.
Args:
qasm_str (str): A QASM program string
Return:
QuantumCircuit: The QuantumCircuit object for the input QASM
"""
qasm = Qasm(data=qasm_str)
return _circuit_from_qasm(qasm)
@property
def global_phase(self):
"""Return the global phase of the circuit in radians."""
return self._global_phase
@global_phase.setter
def global_phase(self, angle):
"""Set the phase of the circuit.
Args:
angle (float, ParameterExpression): radians
"""
if isinstance(angle, ParameterExpression) and angle.parameters:
self._global_phase = angle
else:
# Set the phase to the [-2 * pi, 2 * pi] interval
angle = float(angle)
if not angle:
self._global_phase = 0
elif angle < 0:
self._global_phase = angle % (-2 * np.pi)
else:
self._global_phase = angle % (2 * np.pi)
@property
def parameters(self):
"""Convenience function to get the parameters defined in the parameter table."""
# parameters from gates
if self._parameters is None:
unsorted = self._unsorted_parameters()
self._parameters = sorted(unsorted, key=functools.cmp_to_key(_compare_parameters))
# return as parameter view, which implements the set and list interface
return ParameterView(self._parameters)
@property
def num_parameters(self):
"""Convenience function to get the number of parameter objects in the circuit."""
return len(self._unsorted_parameters())
def _unsorted_parameters(self):
"""Efficiently get all parameters in the circuit, without any sorting overhead."""
parameters = set(self._parameter_table)
if isinstance(self.global_phase, ParameterExpression):
parameters.update(self.global_phase.parameters)
return parameters
[documentos] @deprecate_arguments({'param_dict': 'parameters'})
def assign_parameters(self, parameters, inplace=False,
param_dict=None): # pylint: disable=unused-argument
"""Assign parameters to new parameters or values.
The keys of the parameter dictionary must be Parameter instances in the current circuit. The
values of the dictionary can either be numeric values or new parameter objects.
The values can be assigned to the current circuit object or to a copy of it.
Args:
parameters (dict or iterable): Either a dictionary or iterable specifying the new
parameter values. If a dict, it specifies the mapping from ``current_parameter`` to
``new_parameter``, where ``new_parameter`` can be a new parameter object or a
numeric value. If an iterable, the elements are assigned to the existing parameters
in the order they were inserted. You can call ``QuantumCircuit.parameters`` to check
this order.
inplace (bool): If False, a copy of the circuit with the bound parameters is
returned. If True the circuit instance itself is modified.
param_dict (dict): Deprecated, use ``parameters`` instead.
Raises:
CircuitError: If parameters is a dict and contains parameters not present in the
circuit.
ValueError: If parameters is a list/array and the length mismatches the number of free
parameters in the circuit.
Returns:
Optional(QuantumCircuit): A copy of the circuit with bound parameters, if
``inplace`` is True, otherwise None.
Examples:
Create a parameterized circuit and assign the parameters in-place.
.. jupyter-execute::
from qiskit.circuit import QuantumCircuit, Parameter
circuit = QuantumCircuit(2)
params = [Parameter('A'), Parameter('B'), Parameter('C')]
circuit.ry(params[0], 0)
circuit.crx(params[1], 0, 1)
print('Original circuit:')
print(circuit.draw())
circuit.assign_parameters({params[0]: params[2]}, inplace=True)
print('Assigned in-place:')
print(circuit.draw())
Bind the values out-of-place and get a copy of the original circuit.
.. jupyter-execute::
from qiskit.circuit import QuantumCircuit, ParameterVector
circuit = QuantumCircuit(2)
params = ParameterVector('P', 2)
circuit.ry(params[0], 0)
circuit.crx(params[1], 0, 1)
bound_circuit = circuit.assign_parameters({params[0]: 1, params[1]: 2})
print('Bound circuit:')
print(bound_circuit.draw())
print('The original circuit is unchanged:')
print(circuit.draw())
"""
# replace in self or in a copy depending on the value of in_place
if inplace:
bound_circuit = self
else:
bound_circuit = self.copy()
self._increment_instances()
bound_circuit._name_update()
if isinstance(parameters, dict):
# unroll the parameter dictionary (needed if e.g. it contains a ParameterVector)
unrolled_param_dict = self._unroll_param_dict(parameters)
unsorted_parameters = self._unsorted_parameters()
# check that all param_dict items are in the _parameter_table for this circuit
params_not_in_circuit = [param_key for param_key in unrolled_param_dict
if param_key not in unsorted_parameters]
if len(params_not_in_circuit) > 0:
raise CircuitError('Cannot bind parameters ({}) not present in the circuit.'.format(
', '.join(map(str, params_not_in_circuit))))
# replace the parameters with a new Parameter ("substitute") or numeric value ("bind")
for parameter, value in unrolled_param_dict.items():
bound_circuit._assign_parameter(parameter, value)
else:
if len(parameters) != self.num_parameters:
raise ValueError('Mismatching number of values and parameters. For partial binding '
'please pass a dictionary of {parameter: value} pairs.')
for i, value in enumerate(parameters):
bound_circuit._assign_parameter(self.parameters[i], value)
return None if inplace else bound_circuit
[documentos] @deprecate_arguments({'value_dict': 'values'})
def bind_parameters(self, values, value_dict=None): # pylint: disable=unused-argument
"""Assign numeric parameters to values yielding a new circuit.
To assign new Parameter objects or bind the values in-place, without yielding a new
circuit, use the :meth:`assign_parameters` method.
Args:
values (dict or iterable): {parameter: value, ...} or [value1, value2, ...]
value_dict (dict): Deprecated, use ``values`` instead.
Raises:
CircuitError: If values is a dict and contains parameters not present in the circuit.
TypeError: If values contains a ParameterExpression.
Returns:
QuantumCircuit: copy of self with assignment substitution.
"""
if isinstance(values, dict):
if any(isinstance(value, ParameterExpression) for value in values.values()):
raise TypeError(
'Found ParameterExpression in values; use assign_parameters() instead.')
return self.assign_parameters(values)
else:
if any(isinstance(value, ParameterExpression) for value in values):
raise TypeError(
'Found ParameterExpression in values; use assign_parameters() instead.')
return self.assign_parameters(values)
def _unroll_param_dict(self, value_dict):
unrolled_value_dict = {}
for (param, value) in value_dict.items():
if isinstance(param, ParameterVector):
if not len(param) == len(value):
raise CircuitError('ParameterVector {} has length {}, which '
'differs from value list {} of '
'len {}'.format(param, len(param), value, len(value)))
unrolled_value_dict.update(zip(param, value))
# pass anything else except number through. error checking is done in assign_parameter
elif isinstance(param, (ParameterExpression, str)) or param is None:
unrolled_value_dict[param] = value
return unrolled_value_dict
def _assign_parameter(self, parameter, value):
"""Update this circuit where instances of ``parameter`` are replaced by ``value``, which
can be either a numeric value or a new parameter expression.
Args:
parameter (ParameterExpression): Parameter to be bound
value (Union(ParameterExpression, float, int)): A numeric or parametric expression to
replace instances of ``parameter``.
"""
# parameter might be in global phase only
if parameter in self._parameter_table.keys():
for instr, param_index in self._parameter_table[parameter]:
new_param = instr.params[param_index].assign(parameter, value)
# if fully bound, validate
if len(new_param.parameters) == 0:
instr.params[param_index] = instr.validate_parameter(new_param)
else:
instr.params[param_index] = new_param
self._rebind_definition(instr, parameter, value)
if isinstance(value, ParameterExpression):
entry = self._parameter_table.pop(parameter)
for new_parameter in value.parameters:
if new_parameter in self._parameter_table:
self._parameter_table[new_parameter].extend(entry)
else:
self._parameter_table[new_parameter] = entry
else:
del self._parameter_table[parameter] # clear evaluated expressions
if (isinstance(self.global_phase, ParameterExpression) and
parameter in self.global_phase.parameters):
self.global_phase = self.global_phase.assign(parameter, value)
# clear parameter cache
self._parameters = None
self._assign_calibration_parameters(parameter, value)
def _assign_calibration_parameters(self, parameter, value):
"""Update parameterized pulse gate calibrations, if there are any which contain
``parameter``. This updates the calibration mapping as well as the gate definition
``Schedule``s, which also may contain ``parameter``.
"""
for cals in self.calibrations.values():
for (qubit, cal_params), schedule in copy.copy(cals).items():
if any(isinstance(p, ParameterExpression) and parameter in p.parameters
for p in cal_params):
del cals[(qubit, cal_params)]
new_cal_params = []
for p in cal_params:
if isinstance(p, ParameterExpression) and parameter in p.parameters:
new_param = p.assign(parameter, value)
if not new_param.parameters:
new_param = float(new_param)
new_cal_params.append(new_param)
else:
new_cal_params.append(p)
schedule.assign_parameters({parameter: value})
cals[(qubit, tuple(new_cal_params))] = schedule
def _rebind_definition(self, instruction, parameter, value):
if instruction._definition:
for op, _, _ in instruction._definition:
for idx, param in enumerate(op.params):
if isinstance(param, ParameterExpression) and parameter in param.parameters:
if isinstance(value, ParameterExpression):
op.params[idx] = param.subs({parameter: value})
else:
op.params[idx] = param.bind({parameter: value})
self._rebind_definition(op, parameter, value)
[documentos] def barrier(self, *qargs):
"""Apply :class:`~qiskit.circuit.Barrier`. If qargs is None, applies to all."""
from .barrier import Barrier
qubits = []
if not qargs: # None
qubits.extend(self.qubits)
for qarg in qargs:
if isinstance(qarg, QuantumRegister):
qubits.extend([qarg[j] for j in range(qarg.size)])
elif isinstance(qarg, list):
qubits.extend(qarg)
elif isinstance(qarg, range):
qubits.extend(list(qarg))
elif isinstance(qarg, slice):
qubits.extend(self.qubits[qarg])
else:
qubits.append(qarg)
return self.append(Barrier(len(qubits)), qubits, [])
[documentos] def delay(self, duration, qarg=None, unit='dt'):
"""Apply :class:`~qiskit.circuit.Delay`. If qarg is None, applies to all qubits.
When applying to multiple qubits, delays with the same duration will be created.
Args:
duration (int or float): duration of the delay.
qarg (Object): qubit argument to apply this delay.
unit (str): unit of the duration. Supported units: 's', 'ms', 'us', 'ns', 'ps', 'dt'.
Default is ``dt``, i.e. integer time unit depending on the target backend.
Returns:
qiskit.Instruction: the attached delay instruction.
Raises:
CircuitError: if arguments have bad format.
"""
qubits = []
if qarg is None: # -> apply delays to all qubits
for q in self.qubits:
qubits.append(q)
else:
if isinstance(qarg, QuantumRegister):
qubits.extend([qarg[j] for j in range(qarg.size)])
elif isinstance(qarg, list):
qubits.extend(qarg)
elif isinstance(qarg, (range, tuple)):
qubits.extend(list(qarg))
elif isinstance(qarg, slice):
qubits.extend(self.qubits[qarg])
else:
qubits.append(qarg)
instructions = InstructionSet()
for q in qubits:
inst = (Delay(duration, unit), [q], [])
self.append(*inst)
instructions.add(*inst)
return instructions
[documentos] def h(self, qubit): # pylint: disable=invalid-name
"""Apply :class:`~qiskit.circuit.library.HGate`."""
from .library.standard_gates.h import HGate
return self.append(HGate(), [qubit], [])
[documentos] def ch(self, control_qubit, target_qubit, # pylint: disable=invalid-name
label=None, ctrl_state=None):
"""Apply :class:`~qiskit.circuit.library.CHGate`."""
from .library.standard_gates.h import CHGate
return self.append(CHGate(label=label, ctrl_state=ctrl_state),
[control_qubit, target_qubit], [])
[documentos] def i(self, qubit):
"""Apply :class:`~qiskit.circuit.library.IGate`."""
from .library.standard_gates.i import IGate
return self.append(IGate(), [qubit], [])
[documentos] def id(self, qubit): # pylint: disable=invalid-name
"""Apply :class:`~qiskit.circuit.library.IGate`."""
return self.i(qubit)
[documentos] def ms(self, theta, qubits): # pylint: disable=invalid-name
"""Apply :class:`~qiskit.circuit.library.MSGate`."""
# pylint: disable=cyclic-import
from .library.generalized_gates.gms import MSGate
return self.append(MSGate(len(qubits), theta), qubits)
[documentos] def p(self, theta, qubit):
"""Apply :class:`~qiskit.circuit.library.PhaseGate`."""
from .library.standard_gates.p import PhaseGate
return self.append(PhaseGate(theta), [qubit], [])
[documentos] def cp(self, theta, control_qubit, target_qubit, label=None, ctrl_state=None):
"""Apply :class:`~qiskit.circuit.library.CPhaseGate`."""
from .library.standard_gates.p import CPhaseGate
return self.append(CPhaseGate(theta, label=label, ctrl_state=ctrl_state),
[control_qubit, target_qubit], [])
[documentos] def mcp(self, lam, control_qubits, target_qubit):
"""Apply :class:`~qiskit.circuit.library.MCPhaseGate`."""
from .library.standard_gates.p import MCPhaseGate
num_ctrl_qubits = len(control_qubits)
return self.append(MCPhaseGate(lam, num_ctrl_qubits), control_qubits[:] + [target_qubit],
[])
[documentos] def r(self, theta, phi, qubit):
"""Apply :class:`~qiskit.circuit.library.RGate`."""
from .library.standard_gates.r import RGate
return self.append(RGate(theta, phi), [qubit], [])
[documentos] def rv(self, vx, vy, vz, qubit):
"""Apply :class:`~qiskit.circuit.library.RVGate`."""
from .library.generalized_gates.rv import RVGate
return self.append(RVGate(vx, vy, vz), [qubit], [])
[documentos] def rccx(self, control_qubit1, control_qubit2, target_qubit):
"""Apply :class:`~qiskit.circuit.library.RCCXGate`."""
from .library.standard_gates.x import RCCXGate
return self.append(RCCXGate(), [control_qubit1, control_qubit2, target_qubit], [])
[documentos] def rcccx(self, control_qubit1, control_qubit2, control_qubit3, target_qubit):
"""Apply :class:`~qiskit.circuit.library.RC3XGate`."""
from .library.standard_gates.x import RC3XGate
return self.append(RC3XGate(),
[control_qubit1, control_qubit2, control_qubit3, target_qubit],
[])
[documentos] def rx(self, theta, qubit, label=None): # pylint: disable=invalid-name
"""Apply :class:`~qiskit.circuit.library.RXGate`."""
from .library.standard_gates.rx import RXGate
return self.append(RXGate(theta, label=label), [qubit], [])
[documentos] def crx(self, theta, control_qubit, target_qubit, label=None, ctrl_state=None):
"""Apply :class:`~qiskit.circuit.library.CRXGate`."""
from .library.standard_gates.rx import CRXGate
return self.append(CRXGate(theta, label=label, ctrl_state=ctrl_state),
[control_qubit, target_qubit], [])
[documentos] def rxx(self, theta, qubit1, qubit2):
"""Apply :class:`~qiskit.circuit.library.RXXGate`."""
from .library.standard_gates.rxx import RXXGate
return self.append(RXXGate(theta), [qubit1, qubit2], [])
[documentos] def ry(self, theta, qubit, label=None): # pylint: disable=invalid-name
"""Apply :class:`~qiskit.circuit.library.RYGate`."""
from .library.standard_gates.ry import RYGate
return self.append(RYGate(theta, label=label), [qubit], [])
[documentos] def cry(self, theta, control_qubit, target_qubit, label=None, ctrl_state=None):
"""Apply :class:`~qiskit.circuit.library.CRYGate`."""
from .library.standard_gates.ry import CRYGate
return self.append(CRYGate(theta, label=label, ctrl_state=ctrl_state),
[control_qubit, target_qubit], [])
[documentos] def ryy(self, theta, qubit1, qubit2):
"""Apply :class:`~qiskit.circuit.library.RYYGate`."""
from .library.standard_gates.ryy import RYYGate
return self.append(RYYGate(theta), [qubit1, qubit2], [])
[documentos] def rz(self, phi, qubit): # pylint: disable=invalid-name
"""Apply :class:`~qiskit.circuit.library.RZGate`."""
from .library.standard_gates.rz import RZGate
return self.append(RZGate(phi), [qubit], [])
[documentos] def crz(self, theta, control_qubit, target_qubit, label=None, ctrl_state=None):
"""Apply :class:`~qiskit.circuit.library.CRZGate`."""
from .library.standard_gates.rz import CRZGate
return self.append(CRZGate(theta, label=label, ctrl_state=ctrl_state),
[control_qubit, target_qubit], [])
[documentos] def rzx(self, theta, qubit1, qubit2):
"""Apply :class:`~qiskit.circuit.library.RZXGate`."""
from .library.standard_gates.rzx import RZXGate
return self.append(RZXGate(theta), [qubit1, qubit2], [])
[documentos] def rzz(self, theta, qubit1, qubit2):
"""Apply :class:`~qiskit.circuit.library.RZZGate`."""
from .library.standard_gates.rzz import RZZGate
return self.append(RZZGate(theta), [qubit1, qubit2], [])
[documentos] def ecr(self, qubit1, qubit2):
"""Apply :class:`~qiskit.circuit.library.ECRGate`."""
from .library.standard_gates.ecr import ECRGate
return self.append(ECRGate(), [qubit1, qubit2], [])
[documentos] def s(self, qubit): # pylint: disable=invalid-name
"""Apply :class:`~qiskit.circuit.library.SGate`."""
from .library.standard_gates.s import SGate
return self.append(SGate(), [qubit], [])
[documentos] def sdg(self, qubit):
"""Apply :class:`~qiskit.circuit.library.SdgGate`."""
from .library.standard_gates.s import SdgGate
return self.append(SdgGate(), [qubit], [])
[documentos] def swap(self, qubit1, qubit2):
"""Apply :class:`~qiskit.circuit.library.SwapGate`."""
from .library.standard_gates.swap import SwapGate
return self.append(SwapGate(), [qubit1, qubit2], [])
[documentos] def iswap(self, qubit1, qubit2):
"""Apply :class:`~qiskit.circuit.library.iSwapGate`."""
from .library.standard_gates.iswap import iSwapGate
return self.append(iSwapGate(), [qubit1, qubit2], [])
[documentos] def cswap(self, control_qubit, target_qubit1, target_qubit2, label=None, ctrl_state=None):
"""Apply :class:`~qiskit.circuit.library.CSwapGate`."""
from .library.standard_gates.swap import CSwapGate
return self.append(CSwapGate(label=label, ctrl_state=ctrl_state),
[control_qubit, target_qubit1, target_qubit2], [])
[documentos] def fredkin(self, control_qubit, target_qubit1, target_qubit2):
"""Apply :class:`~qiskit.circuit.library.CSwapGate`."""
return self.cswap(control_qubit, target_qubit1, target_qubit2)
[documentos] def sx(self, qubit): # pylint: disable=invalid-name
"""Apply :class:`~qiskit.circuit.library.SXGate`."""
from .library.standard_gates.sx import SXGate
return self.append(SXGate(), [qubit], [])
[documentos] def sxdg(self, qubit):
"""Apply :class:`~qiskit.circuit.library.SXdgGate`."""
from .library.standard_gates.sx import SXdgGate
return self.append(SXdgGate(), [qubit], [])
[documentos] def csx(self, control_qubit, target_qubit, label=None, ctrl_state=None):
"""Apply :class:`~qiskit.circuit.library.CSXGate`."""
from .library.standard_gates.sx import CSXGate
return self.append(CSXGate(label=label, ctrl_state=ctrl_state),
[control_qubit, target_qubit], [])
[documentos] def t(self, qubit): # pylint: disable=invalid-name
"""Apply :class:`~qiskit.circuit.library.TGate`."""
from .library.standard_gates.t import TGate
return self.append(TGate(), [qubit], [])
[documentos] def tdg(self, qubit):
"""Apply :class:`~qiskit.circuit.library.TdgGate`."""
from .library.standard_gates.t import TdgGate
return self.append(TdgGate(), [qubit], [])
[documentos] def u(self, theta, phi, lam, qubit):
"""Apply :class:`~qiskit.circuit.library.UGate`."""
from .library.standard_gates.u import UGate
return self.append(UGate(theta, phi, lam), [qubit], [])
[documentos] def cu(self, theta, phi, lam, gamma,
control_qubit, target_qubit, label=None, ctrl_state=None):
"""Apply :class:`~qiskit.circuit.library.CUGate`."""
from .library.standard_gates.u import CUGate
return self.append(CUGate(theta, phi, lam, gamma, label=label, ctrl_state=ctrl_state),
[control_qubit, target_qubit], [])
[documentos] @deprecate_function('The QuantumCircuit.u1 method is deprecated as of '
'0.16.0. It will be removed no earlier than 3 months '
'after the release date. You should use the '
'QuantumCircuit.p method instead, which acts '
'identically.')
def u1(self, theta, qubit):
"""Apply :class:`~qiskit.circuit.library.U1Gate`."""
from .library.standard_gates.u1 import U1Gate
return self.append(U1Gate(theta), [qubit], [])
[documentos] @deprecate_function('The QuantumCircuit.cu1 method is deprecated as of '
'0.16.0. It will be removed no earlier than 3 months '
'after the release date. You should use the '
'QuantumCircuit.cp method instead, which acts '
'identically.')
def cu1(self, theta, control_qubit, target_qubit, label=None, ctrl_state=None):
"""Apply :class:`~qiskit.circuit.library.CU1Gate`."""
from .library.standard_gates.u1 import CU1Gate
return self.append(CU1Gate(theta, label=label, ctrl_state=ctrl_state),
[control_qubit, target_qubit], [])
[documentos] @deprecate_function('The QuantumCircuit.mcu1 method is deprecated as of '
'0.16.0. It will be removed no earlier than 3 months '
'after the release date. You should use the '
'QuantumCircuit.mcp method instead, which acts '
'identically.')
def mcu1(self, lam, control_qubits, target_qubit):
"""Apply :class:`~qiskit.circuit.library.MCU1Gate`."""
from .library.standard_gates.u1 import MCU1Gate
num_ctrl_qubits = len(control_qubits)
return self.append(MCU1Gate(lam, num_ctrl_qubits), control_qubits[:] + [target_qubit], [])
[documentos] @deprecate_function('The QuantumCircuit.u2 method is deprecated as of '
'0.16.0. It will be removed no earlier than 3 months '
'after the release date. You can use the general 1-'
'qubit gate QuantumCircuit.u instead: u2(φ,λ) = '
'u(π/2, φ, λ). Alternatively, you can decompose it in'
'terms of QuantumCircuit.p and QuantumCircuit.sx: '
'u2(φ,λ) = p(π/2+φ) sx p(λ-π/2) (1 pulse on hardware).')
def u2(self, phi, lam, qubit):
"""Apply :class:`~qiskit.circuit.library.U2Gate`."""
from .library.standard_gates.u2 import U2Gate
return self.append(U2Gate(phi, lam), [qubit], [])
[documentos] @deprecate_function('The QuantumCircuit.u3 method is deprecated as of 0.16.0. It will be '
'removed no earlier than 3 months after the release date. You should use '
'QuantumCircuit.u instead, which acts identically. Alternatively, you can '
'decompose u3 in terms of QuantumCircuit.p and QuantumCircuit.sx: '
'u3(ϴ,φ,λ) = p(φ+π) sx p(ϴ+π) sx p(λ) (2 pulses on hardware).')
def u3(self, theta, phi, lam, qubit):
"""Apply :class:`~qiskit.circuit.library.U3Gate`."""
from .library.standard_gates.u3 import U3Gate
return self.append(U3Gate(theta, phi, lam), [qubit], [])
[documentos] @deprecate_function('The QuantumCircuit.cu3 method is deprecated as of 0.16.0. It will be '
'removed no earlier than 3 months after the release date. You should '
'use the QuantumCircuit.cu method instead, where '
'cu3(ϴ,φ,λ) = cu(ϴ,φ,λ,0).')
def cu3(self, theta, phi, lam, control_qubit, target_qubit, label=None, ctrl_state=None):
"""Apply :class:`~qiskit.circuit.library.CU3Gate`."""
from .library.standard_gates.u3 import CU3Gate
return self.append(CU3Gate(theta, phi, lam, label=label, ctrl_state=ctrl_state),
[control_qubit, target_qubit], [])
[documentos] def x(self, qubit, label=None):
"""Apply :class:`~qiskit.circuit.library.XGate`."""
from .library.standard_gates.x import XGate
return self.append(XGate(label=label), [qubit], [])
[documentos] def cx(self, control_qubit, target_qubit, # pylint: disable=invalid-name
label=None, ctrl_state=None):
"""Apply :class:`~qiskit.circuit.library.CXGate`."""
from .library.standard_gates.x import CXGate
return self.append(CXGate(label=label, ctrl_state=ctrl_state),
[control_qubit, target_qubit], [])
[documentos] def cnot(self, control_qubit, target_qubit, label=None, ctrl_state=None):
"""Apply :class:`~qiskit.circuit.library.CXGate`."""
self.cx(control_qubit, target_qubit, label, ctrl_state)
[documentos] def dcx(self, qubit1, qubit2):
"""Apply :class:`~qiskit.circuit.library.DCXGate`."""
from .library.standard_gates.dcx import DCXGate
return self.append(DCXGate(), [qubit1, qubit2], [])
[documentos] def ccx(self, control_qubit1, control_qubit2, target_qubit):
"""Apply :class:`~qiskit.circuit.library.CCXGate`."""
from .library.standard_gates.x import CCXGate
return self.append(CCXGate(),
[control_qubit1, control_qubit2, target_qubit], [])
[documentos] def toffoli(self, control_qubit1, control_qubit2, target_qubit):
"""Apply :class:`~qiskit.circuit.library.CCXGate`."""
self.ccx(control_qubit1, control_qubit2, target_qubit)
[documentos] def mcx(self, control_qubits, target_qubit, ancilla_qubits=None, mode='noancilla'):
"""Apply :class:`~qiskit.circuit.library.MCXGate`.
The multi-cX gate can be implemented using different techniques, which use different numbers
of ancilla qubits and have varying circuit depth. These modes are:
- 'noancilla': Requires 0 ancilla qubits.
- 'recursion': Requires 1 ancilla qubit if more than 4 controls are used, otherwise 0.
- 'v-chain': Requires 2 less ancillas than the number of control qubits.
- 'v-chain-dirty': Same as for the clean ancillas (but the circuit will be longer).
"""
from .library.standard_gates.x import MCXGrayCode, MCXRecursive, MCXVChain
num_ctrl_qubits = len(control_qubits)
available_implementations = {
'noancilla': MCXGrayCode(num_ctrl_qubits),
'recursion': MCXRecursive(num_ctrl_qubits),
'v-chain': MCXVChain(num_ctrl_qubits, False),
'v-chain-dirty': MCXVChain(num_ctrl_qubits, dirty_ancillas=True),
# outdated, previous names
'advanced': MCXRecursive(num_ctrl_qubits),
'basic': MCXVChain(num_ctrl_qubits, dirty_ancillas=False),
'basic-dirty-ancilla': MCXVChain(num_ctrl_qubits, dirty_ancillas=True)
}
# check ancilla input
if ancilla_qubits:
_ = self.qbit_argument_conversion(ancilla_qubits)
try:
gate = available_implementations[mode]
except KeyError as ex:
all_modes = list(available_implementations.keys())
raise ValueError(
f'Unsupported mode ({mode}) selected, choose one of {all_modes}'
) from ex
if hasattr(gate, 'num_ancilla_qubits') and gate.num_ancilla_qubits > 0:
required = gate.num_ancilla_qubits
if ancilla_qubits is None:
raise AttributeError('No ancillas provided, but {} are needed!'.format(required))
# convert ancilla qubits to a list if they were passed as int or qubit
if not hasattr(ancilla_qubits, '__len__'):
ancilla_qubits = [ancilla_qubits]
if len(ancilla_qubits) < required:
actually = len(ancilla_qubits)
raise ValueError('At least {} ancillas required, but {} given.'.format(required,
actually))
# size down if too many ancillas were provided
ancilla_qubits = ancilla_qubits[:required]
else:
ancilla_qubits = []
return self.append(gate, control_qubits[:] + [target_qubit] + ancilla_qubits[:], [])
[documentos] def mct(self, control_qubits, target_qubit, ancilla_qubits=None, mode='noancilla'):
"""Apply :class:`~qiskit.circuit.library.MCXGate`."""
return self.mcx(control_qubits, target_qubit, ancilla_qubits, mode)
[documentos] def y(self, qubit):
"""Apply :class:`~qiskit.circuit.library.YGate`."""
from .library.standard_gates.y import YGate
return self.append(YGate(), [qubit], [])
[documentos] def cy(self, control_qubit, target_qubit, # pylint: disable=invalid-name
label=None, ctrl_state=None):
"""Apply :class:`~qiskit.circuit.library.CYGate`."""
from .library.standard_gates.y import CYGate
return self.append(CYGate(label=label, ctrl_state=ctrl_state),
[control_qubit, target_qubit], [])
[documentos] def z(self, qubit):
"""Apply :class:`~qiskit.circuit.library.ZGate`."""
from .library.standard_gates.z import ZGate
return self.append(ZGate(), [qubit], [])
[documentos] def cz(self, control_qubit, target_qubit,
label=None, ctrl_state=None):
"""Apply :class:`~qiskit.circuit.library.CZGate`."""
from .library.standard_gates.z import CZGate
return self.append(CZGate(label=label, ctrl_state=ctrl_state),
[control_qubit, target_qubit], [])
[documentos] def pauli(self, pauli_string, qubits):
"""Apply :class:`~qiskit.circuit.library.PauliGate`."""
from qiskit.circuit.library.generalized_gates.pauli import PauliGate
return self.append(PauliGate(pauli_string), qubits, [])
[documentos] def add_calibration(self, gate, qubits, schedule, params=None):
"""Register a low-level, custom pulse definition for the given gate.
Args:
gate (Union[Gate, str]): Gate information.
qubits (Union[int, Tuple[int]]): List of qubits to be measured.
schedule (Schedule): Schedule information.
params (Optional[List[Union[float, Parameter]]]): A list of parameters.
Raises:
Exception: if the gate is of type string and params is None.
"""
if isinstance(gate, Gate):
self._calibrations[gate.name][(tuple(qubits), tuple(gate.params))] = schedule
else:
self._calibrations[gate][(tuple(qubits), tuple(params or []))] = schedule
# Functions only for scheduled circuits
[documentos] def qubit_duration(self, *qubits: Union[Qubit, int]) -> Union[int, float]:
"""Return the duration between the start and stop time of the first and last instructions,
excluding delays, over the supplied qubits. Its time unit is ``self.unit``.
Args:
*qubits: Qubits within ``self`` to include.
Returns:
Return the duration between the first start and last stop time of non-delay instructions
"""
return self.qubit_stop_time(*qubits) - self.qubit_start_time(*qubits)
[documentos] def qubit_start_time(self, *qubits: Union[Qubit, int]) -> Union[int, float]:
"""Return the start time of the first instruction, excluding delays,
over the supplied qubits. Its time unit is ``self.unit``.
Return 0 if there are no instructions over qubits
Args:
*qubits: Qubits within ``self`` to include. Integers are allowed for qubits, indicating
indices of ``self.qubits``.
Returns:
Return the start time of the first instruction, excluding delays, over the qubits
Raises:
CircuitError: if ``self`` is a not-yet scheduled circuit.
"""
if self.duration is None:
# circuit has only delays, this is kind of scheduled
for inst, _, _ in self.data:
if not isinstance(inst, Delay):
raise CircuitError("qubit_start_time undefined. "
"Circuit must be scheduled first.")
return 0
qubits = [self.qubits[q] if isinstance(q, int) else q for q in qubits]
starts = {q: 0 for q in qubits}
dones = {q: False for q in qubits}
for inst, qargs, _ in self.data:
for q in qubits:
if q in qargs:
if isinstance(inst, Delay):
if not dones[q]:
starts[q] += inst.duration
else:
dones[q] = True
if len(qubits) == len([done for done in dones.values() if done]): # all done
return min(start for start in starts.values())
return 0 # If there are no instructions over bits
[documentos] def qubit_stop_time(self, *qubits: Union[Qubit, int]) -> Union[int, float]:
"""Return the stop time of the last instruction, excluding delays, over the supplied qubits.
Its time unit is ``self.unit``.
Return 0 if there are no instructions over qubits
Args:
*qubits: Qubits within ``self`` to include. Integers are allowed for qubits, indicating
indices of ``self.qubits``.
Returns:
Return the stop time of the last instruction, excluding delays, over the qubits
Raises:
CircuitError: if ``self`` is a not-yet scheduled circuit.
"""
if self.duration is None:
# circuit has only delays, this is kind of scheduled
for inst, _, _ in self.data:
if not isinstance(inst, Delay):
raise CircuitError("qubit_stop_time undefined. "
"Circuit must be scheduled first.")
return 0
qubits = [self.qubits[q] if isinstance(q, int) else q for q in qubits]
stops = {q: self.duration for q in qubits}
dones = {q: False for q in qubits}
for inst, qargs, _ in reversed(self.data):
for q in qubits:
if q in qargs:
if isinstance(inst, Delay):
if not dones[q]:
stops[q] -= inst.duration
else:
dones[q] = True
if len(qubits) == len([done for done in dones.values() if done]): # all done
return max(stop for stop in stops.values())
return 0 # If there are no instructions over bits
def _circuit_from_qasm(qasm):
# pylint: disable=cyclic-import
from qiskit.converters import ast_to_dag
from qiskit.converters import dag_to_circuit
ast = qasm.parse()
dag = ast_to_dag(ast)
return dag_to_circuit(dag)
def _standard_compare(value1, value2):
if value1 < value2:
return -1
if value1 > value2:
return 1
return 0
def _compare_parameters(param1, param2):
if isinstance(param1, ParameterVectorElement) and isinstance(param2, ParameterVectorElement):
# if they belong to a vector with the same name, sort by index
if param1.vector.name == param2.vector.name:
return _standard_compare(param1.index, param2.index)
# else sort by name
return _standard_compare(param1.name, param2.name)