qiskit.chemistry.algorithms.pes_samplers.EnergySurfaceBase¶
-
class
EnergySurfaceBase
[ソース]¶ Class to hold a potential energy surface
-
__init__
()¶ Initialize self. See help(type(self)) for accurate signature.
Methods
__init__
()Initialize self.
eval
(x)After fitting the data to the fit function, predict the energy at a point x.
fit
(xdata, ydata[, initial_vals, bounds_list])Fits surface to data
get_equilibrium_geometry
([scaling])Get the equilibrium energy.
get_minimal_energy
([scaling])Get the minimal energy.
Get the trust region.
-
abstract
eval
(x)[ソース]¶ After fitting the data to the fit function, predict the energy at a point x.
- パラメータ
x (
float
) – value to evaluate surface in- 戻り値の型
float
- 戻り値
value of surface in point x
-
abstract
fit
(xdata, ydata, initial_vals=None, bounds_list=None)[ソース]¶ Fits surface to data
- パラメータ
xdata (
List
[float
]) – x data to be fittedydata (
List
[float
]) – y data to be fittedinitial_vals (
Optional
[List
[float
]]) – Initial values for fit parameters. None for default. Order of parameters is d_e, alpha, r_0 and m_shift (see fit_function implementation)bounds_list (
Optional
[Tuple
[List
[float
],List
[float
]]]) – Bounds for the fit parameters. None for default. Order of parameters is d_e, alpha, r_0 and m_shift (see fit_function implementation)
- 戻り値の型
None
-
abstract
get_equilibrium_geometry
(scaling=1.0)[ソース]¶ Get the equilibrium energy.
Returns the geometry for the minimal energy (scaled by 『scaling』) Default units (scaling=1.0) are Angstroms. Scale by 1E-10 to get meters.
- パラメータ
scaling (
float
) – scaling factor- 戻り値の型
float
- 戻り値
equilibrium geometry
-
abstract
get_minimal_energy
(scaling=1.0)[ソース]¶ Get the minimal energy.
Returns the value of the minimal energy (scaled by 『scaling』) Default units (scaling=1.0) are J/mol. Scale appropriately for Hartrees.
- パラメータ
scaling (
float
) – scaling factor- 戻り値の型
float
- 戻り値
minimum energy
-
abstract
get_trust_region
()[ソース]¶ Get the trust region.
Returns the bounds of the region (in space) where the energy surface implementation can be trusted. When doing spline interpolation, for example, that would be the region where data is interpolated (vs. extrapolated) from the arguments of fit().
- 戻り値の型
Tuple
[float
,float
]- 戻り値
the trust region between bounds
-