qiskit.algorithms.EstimationProblem¶
-
class
EstimationProblem
(state_preparation, objective_qubits, grover_operator=None, post_processing=None, is_good_state=None)[ソース]¶ The estimation problem is the input to amplitude estimation algorithm.
This class contains all problem-specific information required to run an amplitude estimation algorithm. That means, it minimally contains the state preparation and the specification of the good state. It can further hold some post processing on the estimation of the amplitude or a custom Grover operator.
- パラメータ
state_preparation (
QuantumCircuit
) – A circuit preparing the input state, referred to as \(\mathcal{A}\).objective_qubits (
Union
[int
,List
[int
]]) – A single qubit index or a list of qubit indices to specify which qubits to measure. Theis_good_state
function is applied on the bitstring of these objective qubits.grover_operator (
Optional
[QuantumCircuit
]) – The Grover operator \(\mathcal{Q}\) used as unitary in the phase estimation circuit.post_processing (
Optional
[Callable
[[float
],float
]]) – A mapping applied to the result of the algorithm \(0 \leq a \leq 1\), usually used to map the estimate to a target interval. Defaults to the identity.is_good_state (
Optional
[Callable
[[str
],bool
]]) – A function to check whether a string represents a good state. Defaults to all objective qubits being in state \(|1\rangle\).
-
__init__
(state_preparation, objective_qubits, grover_operator=None, post_processing=None, is_good_state=None)[ソース]¶ - パラメータ
state_preparation (
QuantumCircuit
) – A circuit preparing the input state, referred to as \(\mathcal{A}\).objective_qubits (
Union
[int
,List
[int
]]) – A single qubit index or a list of qubit indices to specify which qubits to measure. Theis_good_state
function is applied on the bitstring of these objective qubits.grover_operator (
Optional
[QuantumCircuit
]) – The Grover operator \(\mathcal{Q}\) used as unitary in the phase estimation circuit.post_processing (
Optional
[Callable
[[float
],float
]]) – A mapping applied to the result of the algorithm \(0 \leq a \leq 1\), usually used to map the estimate to a target interval. Defaults to the identity.is_good_state (
Optional
[Callable
[[str
],bool
]]) – A function to check whether a string represents a good state. Defaults to all objective qubits being in state \(|1\rangle\).
Methods
__init__
(state_preparation, objective_qubits)- type state_preparation
QuantumCircuit
rescale
(scaling_factor)Rescale the good state amplitude in the estimation problem.
Attributes
Get the \(\mathcal{Q}\) operator, or Grover operator.
Checks whether a bitstring represents a good state.
Get the criterion for a measurement outcome to be in a 『good』 state.
Apply post processing to the input value.
Get the \(\mathcal{A}\) operator encoding the amplitude \(a\).
-
property
grover_operator
¶ Get the \(\mathcal{Q}\) operator, or Grover operator.
If the Grover operator is not set, we try to build it from the \(\mathcal{A}\) operator and objective_qubits. This only works if objective_qubits is a list of integers.
- 戻り値の型
Optional
[QuantumCircuit
]- 戻り値
The Grover operator, or None if neither the Grover operator nor the \(\mathcal{A}\) operator is set.
-
property
is_good_state
¶ Checks whether a bitstring represents a good state.
- 戻り値の型
Callable
[[str
],bool
]- 戻り値
Handle to the
is_good_state
callable.
-
property
objective_qubits
¶ Get the criterion for a measurement outcome to be in a 『good』 state.
- 戻り値の型
List
[int
]- 戻り値
The criterion as list of qubit indices.
-
property
post_processing
¶ Apply post processing to the input value.
- 戻り値の型
Callable
[[float
],float
]- 戻り値
A handle to the post processing function. Acts as identity by default.
-
rescale
(scaling_factor)[ソース]¶ Rescale the good state amplitude in the estimation problem.
- パラメータ
scaling_factor (
float
) – The scaling factor in [0, 1].- 戻り値の型
EstimationProblem
- 戻り値
A rescaled estimation problem.
-
property
state_preparation
¶ Get the \(\mathcal{A}\) operator encoding the amplitude \(a\).
- 戻り値の型
Optional
[QuantumCircuit
]- 戻り値
The \(\mathcal{A}\) operator as QuantumCircuit.