qiskit.quantum_info.states.densitymatrix のソースコード
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
DensityMatrix quantum state class.
"""
import copy
from numbers import Number
import numpy as np
from qiskit.circuit.quantumcircuit import QuantumCircuit
from qiskit.circuit.instruction import Instruction
from qiskit.exceptions import QiskitError
from qiskit.quantum_info.states.quantum_state import QuantumState
from qiskit.quantum_info.operators.mixins.tolerances import TolerancesMixin
from qiskit.quantum_info.operators.op_shape import OpShape
from qiskit.quantum_info.operators.operator import Operator
from qiskit.quantum_info.operators.symplectic import Pauli, SparsePauliOp
from qiskit.quantum_info.operators.scalar_op import ScalarOp
from qiskit.quantum_info.operators.predicates import is_hermitian_matrix
from qiskit.quantum_info.operators.predicates import is_positive_semidefinite_matrix
from qiskit.quantum_info.operators.channel.quantum_channel import QuantumChannel
from qiskit.quantum_info.operators.channel.superop import SuperOp
# pylint: disable=no-name-in-module
from .cython.exp_value import density_expval_pauli_no_x, density_expval_pauli_with_x
[ドキュメント]class DensityMatrix(QuantumState, TolerancesMixin):
"""DensityMatrix class"""
[ドキュメント] def __init__(self, data, dims=None):
"""Initialize a density matrix object.
Args:
data (np.ndarray or list or matrix_like or QuantumCircuit or
qiskit.circuit.Instruction):
A statevector, quantum instruction or an object with a ``to_operator`` or
``to_matrix`` method from which the density matrix can be constructed.
If a vector the density matrix is constructed as the projector of that vector.
If a quantum instruction, the density matrix is constructed by assuming all
qubits are initialized in the zero state.
dims (int or tuple or list): Optional. The subsystem dimension
of the state (See additional information).
Raises:
QiskitError: if input data is not valid.
Additional Information:
The ``dims`` kwarg can be None, an integer, or an iterable of
integers.
* ``Iterable`` -- the subsystem dimensions are the values in the list
with the total number of subsystems given by the length of the list.
* ``Int`` or ``None`` -- the leading dimension of the input matrix
specifies the total dimension of the density matrix. If it is a
power of two the state will be initialized as an N-qubit state.
If it is not a power of two the state will have a single
d-dimensional subsystem.
"""
if isinstance(data, (list, np.ndarray)):
# Finally we check if the input is a raw matrix in either a
# python list or numpy array format.
self._data = np.asarray(data, dtype=complex)
elif isinstance(data, (QuantumCircuit, Instruction)):
# If the data is a circuit or an instruction use the classmethod
# to construct the DensityMatrix object
self._data = DensityMatrix.from_instruction(data)._data
elif hasattr(data, 'to_operator'):
# If the data object has a 'to_operator' attribute this is given
# higher preference than the 'to_matrix' method for initializing
# an Operator object.
op = data.to_operator()
self._data = op.data
if dims is None:
dims = op.output_dims()
elif hasattr(data, 'to_matrix'):
# If no 'to_operator' attribute exists we next look for a
# 'to_matrix' attribute to a matrix that will be cast into
# a complex numpy matrix.
self._data = np.asarray(data.to_matrix(), dtype=complex)
else:
raise QiskitError("Invalid input data format for DensityMatrix")
# Convert statevector into a density matrix
ndim = self._data.ndim
shape = self._data.shape
if ndim == 2 and shape[0] == shape[1]:
pass # We good
elif ndim == 1:
self._data = np.outer(self._data, np.conj(self._data))
elif ndim == 2 and shape[1] == 1:
self._data = np.reshape(self._data, shape[0])
else:
raise QiskitError(
"Invalid DensityMatrix input: not a square matrix.")
super().__init__(op_shape=OpShape.auto(
shape=self._data.shape, dims_l=dims, dims_r=dims))
def __array__(self, dtype=None):
if dtype:
return np.asarray(self.data, dtype=dtype)
return self.data
def __eq__(self, other):
return super().__eq__(other) and np.allclose(
self._data, other._data, rtol=self.rtol, atol=self.atol)
def __repr__(self):
prefix = 'DensityMatrix('
pad = len(prefix) * ' '
return '{}{},\n{}dims={})'.format(
prefix, np.array2string(
self._data, separator=', ', prefix=prefix),
pad, self._op_shape.dims_l())
[ドキュメント] def draw(self, output=None, **drawer_args):
"""Return a visualization of the Statevector.
**repr**: ASCII TextMatrix of the state's ``__repr__``.
**text**: ASCII TextMatrix that can be printed in the console.
**latex**: An IPython Latex object for displaying in Jupyter Notebooks.
**latex_source**: Raw, uncompiled ASCII source to generate array using LaTeX.
**qsphere**: Matplotlib figure, rendering of density matrix using `plot_state_qsphere()`.
**hinton**: Matplotlib figure, rendering of density matrix using `plot_state_hinton()`.
**bloch**: Matplotlib figure, rendering of density matrix using `plot_bloch_multivector()`.
Args:
output (str): Select the output method to use for drawing the
state. Valid choices are `repr`, `text`, `latex`, `latex_source`,
`qsphere`, `hinton`, or `bloch`. Default is `repr`. Default can
be changed by adding the line ``state_drawer = <default>`` to
``~/.qiskit/settings.conf`` under ``[default]``.
drawer_args: Arguments to be passed directly to the relevant drawing
function or constructor (`TextMatrix()`, `array_to_latex()`,
`plot_state_qsphere()`, `plot_state_hinton()` or `plot_bloch_multivector()`).
See the relevant function under `qiskit.visualization` for that function's
documentation.
Returns:
:class:`matplotlib.Figure` or :class:`str` or
:class:`TextMatrix` or :class:`IPython.display.Latex`:
Drawing of the Statevector.
Raises:
ValueError: when an invalid output method is selected.
"""
# pylint: disable=cyclic-import
from qiskit.visualization.state_visualization import state_drawer
return state_drawer(self, output=output, **drawer_args)
def _ipython_display_(self):
out = self.draw()
if isinstance(out, str):
print(out)
else:
from IPython.display import display
display(out)
@property
def data(self):
"""Return data."""
return self._data
[ドキュメント] def is_valid(self, atol=None, rtol=None):
"""Return True if trace 1 and positive semidefinite."""
if atol is None:
atol = self.atol
if rtol is None:
rtol = self.rtol
# Check trace == 1
if not np.allclose(self.trace(), 1, rtol=rtol, atol=atol):
return False
# Check Hermitian
if not is_hermitian_matrix(self.data, rtol=rtol, atol=atol):
return False
# Check positive semidefinite
return is_positive_semidefinite_matrix(self.data, rtol=rtol, atol=atol)
[ドキュメント] def to_operator(self):
"""Convert to Operator"""
dims = self.dims()
return Operator(self.data, input_dims=dims, output_dims=dims)
[ドキュメント] def conjugate(self):
"""Return the conjugate of the density matrix."""
return DensityMatrix(np.conj(self.data), dims=self.dims())
[ドキュメント] def purity(self):
"""Return the purity of the quantum state."""
# For a valid statevector the purity is always 1, however if we simply
# have an arbitrary vector (not correctly normalized) then the
# purity is equivalent to the trace squared:
# P(|psi>) = Tr[|psi><psi|psi><psi|] = |<psi|psi>|^2
return np.trace(np.dot(self.data, self.data))
[ドキュメント] def tensor(self, other):
"""Return the tensor product state self ⊗ other.
Args:
other (DensityMatrix): a quantum state object.
Returns:
DensityMatrix: the tensor product operator self ⊗ other.
Raises:
QiskitError: if other is not a quantum state.
"""
if not isinstance(other, DensityMatrix):
other = DensityMatrix(other)
ret = copy.copy(self)
ret._data = np.kron(self._data, other._data)
ret._op_shape = self._op_shape.tensor(other._op_shape)
return ret
[ドキュメント] def expand(self, other):
"""Return the tensor product state other ⊗ self.
Args:
other (DensityMatrix): a quantum state object.
Returns:
DensityMatrix: the tensor product state other ⊗ self.
Raises:
QiskitError: if other is not a quantum state.
"""
if not isinstance(other, DensityMatrix):
other = DensityMatrix(other)
ret = copy.copy(self)
ret._data = np.kron(other._data, self._data)
ret._op_shape = self._op_shape.expand(other._op_shape)
return ret
def _add(self, other):
"""Return the linear combination self + other.
Args:
other (DensityMatrix): a quantum state object.
Returns:
DensityMatrix: the linear combination self + other.
Raises:
QiskitError: if other is not a quantum state, or has
incompatible dimensions.
"""
if not isinstance(other, DensityMatrix):
other = DensityMatrix(other)
self._op_shape._validate_add(other._op_shape)
ret = copy.copy(self)
ret._data = self.data + other.data
return ret
def _multiply(self, other):
"""Return the scalar multiplied state other * self.
Args:
other (complex): a complex number.
Returns:
DensityMatrix: the scalar multiplied state other * self.
Raises:
QiskitError: if other is not a valid complex number.
"""
if not isinstance(other, Number):
raise QiskitError("other is not a number")
ret = copy.copy(self)
ret._data = other * self.data
return ret
[ドキュメント] def evolve(self, other, qargs=None):
"""Evolve a quantum state by an operator.
Args:
other (Operator or QuantumChannel
or Instruction or Circuit): The operator to evolve by.
qargs (list): a list of QuantumState subsystem positions to apply
the operator on.
Returns:
QuantumState: the output quantum state.
Raises:
QiskitError: if the operator dimension does not match the
specified QuantumState subsystem dimensions.
"""
if qargs is None:
qargs = getattr(other, 'qargs', None)
# Evolution by a circuit or instruction
if isinstance(other, (QuantumCircuit, Instruction)):
return self._evolve_instruction(other, qargs=qargs)
# Evolution by a QuantumChannel
if hasattr(other, 'to_quantumchannel'):
return other.to_quantumchannel()._evolve(self, qargs=qargs)
if isinstance(other, QuantumChannel):
return other._evolve(self, qargs=qargs)
# Unitary evolution by an Operator
if not isinstance(other, Operator):
other = Operator(other)
return self._evolve_operator(other, qargs=qargs)
[ドキュメント] def reverse_qargs(self):
r"""Return a DensityMatrix with reversed subsystem ordering.
For a tensor product state this is equivalent to reversing the order
of tensor product subsystems. For a density matrix
:math:`\rho = \rho_{n-1} \otimes ... \otimes \rho_0`
the returned state will be
:math:`\rho_0 \otimes ... \otimes \rho_{n-1}`.
Returns:
DensityMatrix: the state with reversed subsystem order.
"""
ret = copy.copy(self)
axes = tuple(range(self._op_shape._num_qargs_l - 1, -1, -1))
axes = axes + tuple(len(axes) + i for i in axes)
ret._data = np.reshape(np.transpose(
np.reshape(self.data, self._op_shape.tensor_shape), axes),
self._op_shape.shape)
ret._op_shape = self._op_shape.reverse()
return ret
def _expectation_value_pauli(self, pauli, qargs=None):
"""Compute the expectation value of a Pauli.
Args:
pauli (Pauli): a Pauli operator to evaluate expval of.
qargs (None or list): subsystems to apply operator on.
Returns:
complex: the expectation value.
"""
n_pauli = len(pauli)
if qargs is None:
qubits = np.arange(n_pauli)
else:
qubits = np.array(qargs)
x_mask = np.dot(1 << qubits, pauli.x)
z_mask = np.dot(1 << qubits, pauli.z)
pauli_phase = (-1j) ** pauli.phase if pauli.phase else 1
if x_mask + z_mask == 0:
return pauli_phase * self.trace()
data = np.ravel(self.data, order='F')
if x_mask == 0:
return pauli_phase * density_expval_pauli_no_x(data, self.num_qubits, z_mask)
x_max = qubits[pauli.x][-1]
y_phase = (-1j) ** np.sum(pauli.x & pauli.z)
return pauli_phase * density_expval_pauli_with_x(
data, self.num_qubits, z_mask, x_mask, y_phase, x_max)
[ドキュメント] def expectation_value(self, oper, qargs=None):
"""Compute the expectation value of an operator.
Args:
oper (Operator): an operator to evaluate expval.
qargs (None or list): subsystems to apply the operator on.
Returns:
complex: the expectation value.
"""
if isinstance(oper, Pauli):
return self._expectation_value_pauli(oper, qargs)
if isinstance(oper, SparsePauliOp):
return sum([coeff * self._expectation_value_pauli(Pauli((z, x)), qargs)
for z, x, coeff in zip(oper.table.Z, oper.table.X, oper.coeffs)])
if not isinstance(oper, Operator):
oper = Operator(oper)
return np.trace(Operator(self).dot(oper, qargs=qargs).data)
[ドキュメント] def probabilities(self, qargs=None, decimals=None):
"""Return the subsystem measurement probability vector.
Measurement probabilities are with respect to measurement in the
computation (diagonal) basis.
Args:
qargs (None or list): subsystems to return probabilities for,
if None return for all subsystems (Default: None).
decimals (None or int): the number of decimal places to round
values. If None no rounding is done (Default: None).
Returns:
np.array: The Numpy vector array of probabilities.
Examples:
Consider a 2-qubit product state :math:`\\rho=\\rho_1\\otimes\\rho_0`
with :math:`\\rho_1=|+\\rangle\\!\\langle+|`,
:math:`\\rho_0=|0\\rangle\\!\\langle0|`.
.. jupyter-execute::
from qiskit.quantum_info import DensityMatrix
rho = DensityMatrix.from_label('+0')
# Probabilities for measuring both qubits
probs = rho.probabilities()
print('probs: {}'.format(probs))
# Probabilities for measuring only qubit-0
probs_qubit_0 = rho.probabilities([0])
print('Qubit-0 probs: {}'.format(probs_qubit_0))
# Probabilities for measuring only qubit-1
probs_qubit_1 = rho.probabilities([1])
print('Qubit-1 probs: {}'.format(probs_qubit_1))
We can also permute the order of qubits in the ``qargs`` list
to change the qubit position in the probabilities output
.. jupyter-execute::
from qiskit.quantum_info import DensityMatrix
rho = DensityMatrix.from_label('+0')
# Probabilities for measuring both qubits
probs = rho.probabilities([0, 1])
print('probs: {}'.format(probs))
# Probabilities for measuring both qubits
# but swapping qubits 0 and 1 in output
probs_swapped = rho.probabilities([1, 0])
print('Swapped probs: {}'.format(probs_swapped))
"""
probs = self._subsystem_probabilities(
np.abs(self.data.diagonal()), self._op_shape.dims_l(), qargs=qargs)
if decimals is not None:
probs = probs.round(decimals=decimals)
return probs
[ドキュメント] def reset(self, qargs=None):
"""Reset state or subsystems to the 0-state.
Args:
qargs (list or None): subsystems to reset, if None all
subsystems will be reset to their 0-state
(Default: None).
Returns:
DensityMatrix: the reset state.
Additional Information:
If all subsystems are reset this will return the ground state
on all subsystems. If only a some subsystems are reset this
function will perform evolution by the reset
:class:`~qiskit.quantum_info.SuperOp` of the reset subsystems.
"""
if qargs is None:
# Resetting all qubits does not require sampling or RNG
ret = copy.copy(self)
state = np.zeros(self._op_shape.shape, dtype=complex)
state[0, 0] = 1
ret._data = state
return ret
# Reset by evolving by reset SuperOp
dims = self.dims(qargs)
reset_superop = SuperOp(ScalarOp(dims, coeff=0))
reset_superop.data[0] = Operator(ScalarOp(dims)).data.ravel()
return self.evolve(reset_superop, qargs=qargs)
[ドキュメント] @classmethod
def from_label(cls, label):
r"""Return a tensor product of Pauli X,Y,Z eigenstates.
.. list-table:: Single-qubit state labels
:header-rows: 1
* - Label
- Statevector
* - ``"0"``
- :math:`\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}`
* - ``"1"``
- :math:`\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}`
* - ``"+"``
- :math:`\frac{1}{2}\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}`
* - ``"-"``
- :math:`\frac{1}{2}\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}`
* - ``"r"``
- :math:`\frac{1}{2}\begin{pmatrix} 1 & -i \\ i & 1 \end{pmatrix}`
* - ``"l"``
- :math:`\frac{1}{2}\begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}`
Args:
label (string): a eigenstate string ket label (see table for
allowed values).
Returns:
Statevector: The N-qubit basis state density matrix.
Raises:
QiskitError: if the label contains invalid characters, or the length
of the label is larger than an explicitly specified num_qubits.
"""
from qiskit.quantum_info.states.statevector import Statevector
return DensityMatrix(Statevector.from_label(label))
[ドキュメント] @staticmethod
def from_int(i, dims):
"""Return a computational basis state density matrix.
Args:
i (int): the basis state element.
dims (int or tuple or list): The subsystem dimensions of the statevector
(See additional information).
Returns:
DensityMatrix: The computational basis state :math:`|i\\rangle\\!\\langle i|`.
Additional Information:
The ``dims`` kwarg can be an integer or an iterable of integers.
* ``Iterable`` -- the subsystem dimensions are the values in the list
with the total number of subsystems given by the length of the list.
* ``Int`` -- the integer specifies the total dimension of the
state. If it is a power of two the state will be initialized
as an N-qubit state. If it is not a power of two the state
will have a single d-dimensional subsystem.
"""
size = np.product(dims)
state = np.zeros((size, size), dtype=complex)
state[i, i] = 1.0
return DensityMatrix(state, dims=dims)
[ドキュメント] @classmethod
def from_instruction(cls, instruction):
"""Return the output density matrix of an instruction.
The statevector is initialized in the state :math:`|{0,\\ldots,0}\\rangle` of
the same number of qubits as the input instruction or circuit, evolved
by the input instruction, and the output statevector returned.
Args:
instruction (qiskit.circuit.Instruction or QuantumCircuit): instruction or circuit
Returns:
DensityMatrix: the final density matrix.
Raises:
QiskitError: if the instruction contains invalid instructions for
density matrix simulation.
"""
# Convert circuit to an instruction
if isinstance(instruction, QuantumCircuit):
instruction = instruction.to_instruction()
# Initialize an the statevector in the all |0> state
num_qubits = instruction.num_qubits
init = np.zeros((2**num_qubits, 2**num_qubits), dtype=complex)
init[0, 0] = 1
vec = DensityMatrix(init, dims=num_qubits * (2, ))
vec._append_instruction(instruction)
return vec
[ドキュメント] def to_dict(self, decimals=None):
r"""Convert the density matrix to dictionary form.
This dictionary representation uses a Ket-like notation where the
dictionary keys are qudit strings for the subsystem basis vectors.
If any subsystem has a dimension greater than 10 comma delimiters are
inserted between integers so that subsystems can be distinguished.
Args:
decimals (None or int): the number of decimal places to round
values. If None no rounding is done
(Default: None).
Returns:
dict: the dictionary form of the DensityMatrix.
Examples:
The ket-form of a 2-qubit density matrix
:math:`rho = |-\rangle\!\langle -|\otimes |0\rangle\!\langle 0|`
.. jupyter-execute::
from qiskit.quantum_info import DensityMatrix
rho = DensityMatrix.from_label('-0')
print(rho.to_dict())
For non-qubit subsystems the integer range can go from 0 to 9. For
example in a qutrit system
.. jupyter-execute::
import numpy as np
from qiskit.quantum_info import DensityMatrix
mat = np.zeros((9, 9))
mat[0, 0] = 0.25
mat[3, 3] = 0.25
mat[6, 6] = 0.25
mat[-1, -1] = 0.25
rho = DensityMatrix(mat, dims=(3, 3))
print(rho.to_dict())
For large subsystem dimensions delimiters are required. The
following example is for a 20-dimensional system consisting of
a qubit and 10-dimensional qudit.
.. jupyter-execute::
import numpy as np
from qiskit.quantum_info import DensityMatrix
mat = np.zeros((2 * 10, 2 * 10))
mat[0, 0] = 0.5
mat[-1, -1] = 0.5
rho = DensityMatrix(mat, dims=(2, 10))
print(rho.to_dict())
"""
return self._matrix_to_dict(self.data,
self._op_shape.dims_l(),
decimals=decimals,
string_labels=True)
def _evolve_operator(self, other, qargs=None):
"""Evolve density matrix by an operator"""
# Get shape of output density matrix
new_shape = self._op_shape.compose(other._op_shape, qargs=qargs)
new_shape._dims_r = new_shape._dims_l
new_shape._num_qargs_r = new_shape._num_qargs_l
ret = copy.copy(self)
if qargs is None:
# Evolution on full matrix
op_mat = other.data
ret._data = np.dot(op_mat, self.data).dot(op_mat.T.conj())
ret._op_shape = new_shape
return ret
# Reshape statevector and operator
tensor = np.reshape(self.data, self._op_shape.tensor_shape)
# Construct list of tensor indices of statevector to be contracted
num_indices = len(self.dims())
indices = [num_indices - 1 - qubit for qubit in qargs]
# Left multiple by mat
mat = np.reshape(other.data, other._op_shape.tensor_shape)
tensor = Operator._einsum_matmul(tensor, mat, indices)
# Right multiply by mat ** dagger
adj = other.adjoint()
mat_adj = np.reshape(adj.data, adj._op_shape.tensor_shape)
tensor = Operator._einsum_matmul(tensor, mat_adj, indices, num_indices,
True)
# Replace evolved dimensions
ret._data = np.reshape(tensor, new_shape.shape)
ret._op_shape = new_shape
return ret
def _append_instruction(self, other, qargs=None):
"""Update the current Statevector by applying an instruction."""
from qiskit.circuit.reset import Reset
from qiskit.circuit.barrier import Barrier
# Try evolving by a matrix operator (unitary-like evolution)
mat = Operator._instruction_to_matrix(other)
if mat is not None:
self._data = self._evolve_operator(Operator(mat), qargs=qargs).data
return
# Special instruction types
if isinstance(other, Reset):
self._data = self.reset(qargs)._data
return
if isinstance(other, Barrier):
return
# Otherwise try evolving by a Superoperator
chan = SuperOp._instruction_to_superop(other)
if chan is not None:
# Evolve current state by the superoperator
self._data = chan._evolve(self, qargs=qargs).data
return
# If the instruction doesn't have a matrix defined we use its
# circuit decomposition definition if it exists, otherwise we
# cannot compose this gate and raise an error.
if other.definition is None:
raise QiskitError('Cannot apply Instruction: {}'.format(
other.name))
if not isinstance(other.definition, QuantumCircuit):
raise QiskitError('{} instruction definition is {}; expected QuantumCircuit'.format(
other.name, type(other.definition)))
qubit_indices = {bit: idx for idx, bit in enumerate(other.definition.qubits)}
for instr, qregs, cregs in other.definition:
if cregs:
raise QiskitError(
'Cannot apply instruction with classical registers: {}'.
format(instr.name))
# Get the integer position of the flat register
if qargs is None:
new_qargs = [qubit_indices[tup] for tup in qregs]
else:
new_qargs = [qargs[qubit_indices[tup]] for tup in qregs]
self._append_instruction(instr, qargs=new_qargs)
def _evolve_instruction(self, obj, qargs=None):
"""Return a new statevector by applying an instruction."""
if isinstance(obj, QuantumCircuit):
obj = obj.to_instruction()
vec = copy.copy(self)
vec._append_instruction(obj, qargs=qargs)
return vec
[ドキュメント] def to_statevector(self, atol=None, rtol=None):
"""Return a statevector from a pure density matrix.
Args:
atol (float): Absolute tolerance for checking operation validity.
rtol (float): Relative tolerance for checking operation validity.
Returns:
Statevector: The pure density matrix's corresponding statevector.
Corresponds to the eigenvector of the only non-zero eigenvalue.
Raises:
QiskitError: if the state is not pure.
"""
from qiskit.quantum_info.states.statevector import Statevector
if atol is None:
atol = self.atol
if rtol is None:
rtol = self.rtol
if not is_hermitian_matrix(self._data, atol=atol, rtol=rtol):
raise QiskitError("Not a valid density matrix (non-hermitian).")
evals, evecs = np.linalg.eig(self._data)
nonzero_evals = evals[abs(evals) > atol]
if len(nonzero_evals) != 1 or not np.isclose(nonzero_evals[0], 1,
atol=atol, rtol=rtol):
raise QiskitError("Density matrix is not a pure state")
psi = evecs[:, np.argmax(evals)] # eigenvectors returned in columns.
return Statevector(psi)