Note
Cette page a été générée à partir de tutorials/optimization/4_grover_optimizer.ipynb.
Exécuter en mode interactif dans le ` IBM Quantum lab <https://quantum-computing.ibm.com/jupyter/tutorial/optimization/8_cvar_optimization.ipynb>` _.
Amélioration de l’optimisation quantique variationelle à l’aide de CVaR¶
Introduction¶
Ce bloc-notes montre comment utiliser la fonction objectif de la valeur conditionnelle à risque (CVaR) introduite dans le [1] dans les algorithmes d’optimisation quantique variationnelle fournis par Qiskit. En particulier, il est montré comment installer le MinimumEigenOptimizer
en utilisant VQE
de manière appropriée. Pour un ensemble donné de d’exécutions avec des valeurs objectives correspondantes du problème d’optimisation considéré, la CVaR avec le niveau de confiance \(\alpha \in [ 0, 1 ]\) est définie comme la moyenne des \(\alpha\) meilleurs résultats. Ainsi, \(\alpha = 1\) correspond à la valeur attendue standard, tandis que \(\alpha=0\) correspond au minimum parmi les résultats d’exécution, et \(\alpha \in (0, 1)\) est un compromis entre la focalisation sur de meilleurs résultats, mais toujours en appliquant une moyenne pour ne pas exacerber la part du résultat de l’optimisation.
Références¶
[1] P. Barkoutsos et al., Improving Variational Quantum Optimization using CVaR, Quantum 4, 256 (2020).
[1]:
from qiskit.circuit.library import RealAmplitudes
from qiskit.aqua.components.optimizers import COBYLA
from qiskit.aqua.algorithms import NumPyMinimumEigensolver, VQE
from qiskit.aqua.operators import PauliExpectation, CVaRExpectation
from qiskit.optimization import QuadraticProgram
from qiskit.optimization.converters import LinearEqualityToPenalty
from qiskit.optimization.algorithms import MinimumEigenOptimizer
from qiskit import execute, Aer
from qiskit.aqua import aqua_globals
import numpy as np
import matplotlib.pyplot as plt
from docplex.mp.model import Model
[2]:
aqua_globals.random_seed = 123456
Optimisation de portefeuille¶
Dans ce qui suit, nous définissons une instance de problème d’optimisation du portefeuille telle qu’introduite dans [1].
[3]:
# prepare problem instance
n = 6 # number of assets
q = 0.5 # risk factor
budget = n // 2 # budget
penalty = 2*n # scaling of penalty term
[4]:
# instance from [1]
mu = np.array([0.7313, 0.9893, 0.2725, 0.8750, 0.7667, 0.3622])
sigma = np.array([
[ 0.7312, -0.6233, 0.4689, -0.5452, -0.0082, -0.3809],
[-0.6233, 2.4732, -0.7538, 2.4659, -0.0733, 0.8945],
[ 0.4689, -0.7538, 1.1543, -1.4095, 0.0007, -0.4301],
[-0.5452, 2.4659, -1.4095, 3.5067, 0.2012, 1.0922],
[-0.0082, -0.0733, 0.0007, 0.2012, 0.6231, 0.1509],
[-0.3809, 0.8945, -0.4301, 1.0922, 0.1509, 0.8992]
])
# or create random instance
# mu, sigma = portfolio.random_model(n, seed=123) # expected returns and covariance matrix
[5]:
# create docplex model
mdl = Model('portfolio_optimization')
x = mdl.binary_var_list('x{}'.format(i) for i in range(n))
objective = mdl.sum([mu[i]*x[i] for i in range(n)])
objective -= q * mdl.sum([sigma[i,j]*x[i]*x[j] for i in range(n) for j in range(n)])
mdl.maximize(objective)
mdl.add_constraint(mdl.sum(x[i] for i in range(n)) == budget)
# case to
qp = QuadraticProgram()
qp.from_docplex(mdl)
[6]:
# solve classically as reference
opt_result = MinimumEigenOptimizer(NumPyMinimumEigensolver()).solve(qp)
opt_result
[6]:
optimal function value: 1.27835
optimal value: [1. 1. 0. 0. 1. 0.]
status: SUCCESS
[7]:
# we convert the problem to an unconstrained problem for further analysis,
# otherwise this would not be necessary as the MinimumEigenSolver would do this
# translation automatically
linear2penalty = LinearEqualityToPenalty(penalty=penalty)
qp = linear2penalty.convert(qp)
_, offset = qp.to_ising()
Optimisation de valeurs propres minimale utilisant VQE¶
[8]:
# set classical optimizer
maxiter = 100
optimizer = COBYLA(maxiter=maxiter)
# set variational ansatz
var_form = RealAmplitudes(n, reps=1)
m = var_form.num_parameters
# set backend
backend_name = 'qasm_simulator' # use this for QASM simulator
# backend_name = 'statevector_simulator' # use this for statevector simlator
backend = Aer.get_backend(backend_name)
# run variational optimization for different values of alpha
alphas = [1.0, 0.50, 0.25] # confidence levels to be evaluated
[9]:
# dictionaries to store optimization progress and results
objectives = {alpha: [] for alpha in alphas} # set of tested objective functions w.r.t. alpha
results = {} # results of minimum eigensolver w.r.t alpha
# callback to store intermediate results
def callback(i, params, obj, stddev, alpha):
# we translate the objective from the internal Ising representation
# to the original optimization problem
objectives[alpha] += [-(obj + offset)]
# loop over all given alpha values
for alpha in alphas:
# initialize CVaR_alpha objective
cvar_exp = CVaRExpectation(alpha, PauliExpectation())
cvar_exp.compute_variance = lambda x: [0] # to be fixed in PR #1373
# initialize VQE using CVaR
vqe = VQE(expectation=cvar_exp, optimizer=optimizer, var_form=var_form, quantum_instance=backend,
callback=lambda i, params, obj, stddev: callback(i, params, obj, stddev, alpha))
# initialize optimization algorithm based on CVaR-VQE
opt_alg = MinimumEigenOptimizer(vqe)
# solve problem
results[alpha] = opt_alg.solve(qp)
# print results
print('alpha = {}:'.format(alpha))
print(results[alpha])
print()
alpha = 1.0:
optimal function value: 0.7295999999999907
optimal value: [0. 1. 1. 0. 1. 0.]
status: SUCCESS
alpha = 0.5:
optimal function value: 0.7295999999999907
optimal value: [0. 1. 1. 0. 1. 0.]
status: SUCCESS
alpha = 0.25:
optimal function value: 1.2783500000000068
optimal value: [1. 1. 0. 0. 1. 0.]
status: SUCCESS
[10]:
# plot resulting history of objective values
plt.figure(figsize=(10, 5))
plt.plot([0, maxiter], [opt_result.fval, opt_result.fval], 'r--', linewidth=2, label='optimum')
for alpha in alphas:
plt.plot(objectives[alpha], label='alpha = %.2f' % alpha, linewidth=2)
plt.legend(loc='lower right', fontsize=14)
plt.xlim(0, maxiter)
plt.xticks(fontsize=14)
plt.xlabel('iterations', fontsize=14)
plt.yticks(fontsize=14)
plt.ylabel('objective value', fontsize=14)
plt.show()

[11]:
# evaluate and sort all objective values
objective_values = np.zeros(2**n)
for i in range(2**n):
x_bin = ('{0:0%sb}' % n).format(i)
x = [0 if x_ == '0' else 1 for x_ in reversed(x_bin)]
objective_values[i] = qp.objective.evaluate(x)
ind = np.argsort(objective_values)
# evaluate final optimal probability for each alpha
probabilities = np.zeros(len(objective_values))
for alpha in alphas:
if backend_name == 'qasm_simulator':
counts = results[alpha].min_eigen_solver_result.eigenstate
shots = sum(counts.values())
for key, val in counts.items():
i = int(key, 2)
probabilities[i] = val / shots
else:
probabilities = np.abs(results[alpha].min_eigen_solver_result.eigenstate)**2
print('optimal probabilitiy (alpha = %.2f): %.4f' % (alpha, probabilities[ind][-1:]))
optimal probabilitiy (alpha = 1.00): 0.0000
optimal probabilitiy (alpha = 0.50): 0.0098
optimal probabilitiy (alpha = 0.25): 0.2402
[12]:
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
Version Information
Qiskit Software | Version |
---|---|
Qiskit | 0.23.0 |
Terra | 0.16.0 |
Aer | 0.7.0 |
Ignis | 0.5.0 |
Aqua | 0.8.0 |
IBM Q Provider | 0.11.0 |
System information | |
Python | 3.7.4 (default, Aug 13 2019, 15:17:50) [Clang 4.0.1 (tags/RELEASE_401/final)] |
OS | Darwin |
CPUs | 6 |
Memory (Gb) | 16.0 |
Mon Oct 19 23:44:24 2020 CEST |
This code is a part of Qiskit
© Copyright IBM 2017, 2020.
This code is licensed under the Apache License, Version 2.0. You may
obtain a copy of this license in the LICENSE.txt file in the root directory
of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
Any modifications or derivative works of this code must retain this
copyright notice, and modified files need to carry a notice indicating
that they have been altered from the originals.
[ ]: