qiskit.ignis.mitigation.CTMPExpvalMeasMitigator¶
-
class
CTMPExpvalMeasMitigator
(generators, rates, num_qubits=None, seed=None)[source]¶ N-qubit CTMP measurement error mitigator.
This class can be used with the
qiskit.ignis.mitigation.expectation_value()
function to apply measurement error mitigation of N-qubit measurement errors caused by one and two-body error generators. Expectation values can also be computed directly using theexpectation_value()
method.For measurement mitigation to be applied the mitigator should be calibrated using the
qiskit.ignis.mitigation.expval_meas_mitigator_circuits()
function andqiskit.ignis.mitigation.ExpvalMeasMitigatorFitter
class with the'CTMP'
mitigation method.Initialize a TensorMeasurementMitigator
-
__init__
(generators, rates, num_qubits=None, seed=None)[source]¶ Initialize a TensorMeasurementMitigator
Methods
__init__
(generators, rates[, num_qubits, seed])Initialize a TensorMeasurementMitigator
assignment_fidelity
([qubits])Return the measurement assignment fidelity on the specified qubits.
assignment_matrix
([qubits])Return the measurement assignment matrix for specified qubits.
expectation_value
(counts[, diagonal, …])Compute the mitigated expectation value of a diagonal observable.
generator_matrix
([qubits])Return the generator matrix on the specified qubits.
mitigation_matrix
([qubits])Return the measurement mitigation matrix for the specified qubits.
mitigation_overhead
([qubits])Return the mitigation overhead for expectation value estimation.
noise_strength
([qubits])Return the noise strength \(gamma\) on the specified qubits
plot_assignment_matrix
([qubits, ax])Matrix plot of the readout error assignment matrix.
plot_mitigation_matrix
([qubits, ax])Matrix plot of the readout error mitigation matrix.
required_shots
(delta[, qubits])Return the number of shots required for expectation value estimation.
seed
([value])Set the seed for the quantum state RNG.
stddev_upper_bound
([shots, qubits])Return an upper bound on standard deviation of expval estimator.
-
assignment_fidelity
(qubits=None)¶ Return the measurement assignment fidelity on the specified qubits.
The assignment fidelity on N-qubits is defined as \(\sum_{x\in\{0, 1\}^n} P(x|x) / 2^n\), where \(P(x|x) = \rangle x|A|x\langle\), and \(A\) is the
assignment_matrix()
.- Parameters
qubits (
Optional
[List
[int
]]) – Optional, qubits being measured for operator expval.- Returns
the assignment fidelity.
- Return type
float
-
assignment_matrix
(qubits=None)[source]¶ Return the measurement assignment matrix for specified qubits.
The assignment matrix is the stochastic matrix \(A\) which assigns a noisy measurement probability distribution to an ideal input measurement distribution: \(P(i|j) = \langle i | A | j \rangle\).
- Parameters
qubits (
Optional
[List
[int
]]) – Optional, qubits being measured for operator expval.- Returns
the assignment matrix A.
- Return type
np.ndarray
-
expectation_value
(counts, diagonal=None, qubits=None, clbits=None)[source]¶ Compute the mitigated expectation value of a diagonal observable.
This computes the mitigated estimator of \(\langle O \rangle = \mbox{Tr}[\rho. O]\) of a diagonal observable \(O = \sum_{x\in\{0, 1\}^n} O(x)|x\rangle\!\langle x|\).
- Parameters
counts (
Dict
) – counts objectdiagonal (
Optional
[ndarray
]) – Optional, the vector of diagonal values for summing the expectation value. IfNone
the the default value is \([1, -1]^\otimes n\).qubits (
Optional
[List
[int
]]) – Optional, the measured physical qubits the count bitstrings correspond to. If None qubits are assumed to be \([0, ..., n-1]\).clbits (
Optional
[List
[int
]]) – Optional, if not None marginalize counts to the specified bits.
- Returns
the expectation value and standard deviation.
- Return type
(float, float)
- Additional Information:
The diagonal observable \(O\) is input using the
diagonal
kwarg as a list or Numpy array \([O(0), ..., O(2^n -1)]\). If no diagonal is specified the diagonal of the Pauli operator :math`O = mbox{diag}(Z^{otimes n}) = [1, -1]^{otimes n}` is used.The
clbits
kwarg is used to marginalize the input counts dictionary over the specified bit-values, and thequbits
kwarg is used to specify which physical qubits these bit-values correspond to ascircuit.measure(qubits, clbits)
.
-
generator_matrix
(qubits=None)[source]¶ Return the generator matrix on the specified qubits.
The generator matrix \(G\) is given by \(\sum_i r_i G_i\) where the sum is taken over all \(G_i\) acting on the specified qubits subset.
- Parameters
qubits (
Optional
[List
[int
]]) – Optional, qubit subset for the generators.- Returns
the generator matrix \(G\).
- Return type
sps.coo_matrix
-
mitigation_matrix
(qubits=None)[source]¶ Return the measurement mitigation matrix for the specified qubits.
The mitigation matrix \(A^{-1}\) is defined as the inverse of the
assignment_matrix()
\(A\).- Parameters
qubits (
Optional
[List
[int
]]) – Optional, qubits being measured for operator expval.- Returns
the measurement error mitigation matrix \(A^{-1}\).
- Return type
np.ndarray
-
mitigation_overhead
(qubits=None)¶ Return the mitigation overhead for expectation value estimation.
This is the multiplicative factor of extra shots required for estimating a mitigated expectation value with the same accuracy as an unmitigated expectation value.
- Parameters
qubits (
Optional
[List
[int
]]) – Optional, qubits being measured for operator expval.- Returns
the mitigation overhead factor.
- Return type
int
-
noise_strength
(qubits=None)[source]¶ Return the noise strength \(gamma\) on the specified qubits
- Return type
float
-
plot_assignment_matrix
(qubits=None, ax=None)¶ Matrix plot of the readout error assignment matrix.
- Parameters
qubits (list(int)) – Optional, qubits being measured for operator expval.
ax (axes) – Optional. Axes object to add plot to.
- Returns
the figure axes object.
- Return type
plt.axes
- Raises
ImportError – if matplotlib is not installed.
-
plot_mitigation_matrix
(qubits=None, ax=None)¶ Matrix plot of the readout error mitigation matrix.
- Parameters
qubits (list(int)) – Optional, qubits being measured for operator expval.
ax (plt.axes) – Optional. Axes object to add plot to.
- Returns
the figure axes object.
- Return type
plt.axes
- Raises
ImportError – if matplotlib is not installed.
-
required_shots
(delta, qubits=None)¶ Return the number of shots required for expectation value estimation.
This is the number of shots required so that \(|\langle O \rangle_{est} - \langle O \rangle_{true}| < \delta\) with high probability (at least 2/3) and is given by \(4\delta^2 \Gamma^2\) where \(\Gamma^2\) is the
mitigation_overhead()
.- Parameters
delta (
float
) – Error tolerance for expectation value estimator.qubits (
Optional
[List
[int
]]) – Optional, qubits being measured for operator expval.
- Returns
the required shots.
- Return type
int
-
stddev_upper_bound
(shots=1, qubits=None)¶ Return an upper bound on standard deviation of expval estimator.
- Parameters
shots (
int
) – Number of shots used for expectation value measurement.qubits (
Optional
[List
[int
]]) – qubits being measured for operator expval.
- Returns
the standard deviation upper bound.
- Return type
float
-