Nota
Esta página foi gerada, a partir do tutorials/simulators/1_aer_provider.ipynb.
Execute interativamente no IBM Quantum lab.
Simuladores¶
Introdução¶
Este notebook mostra como importar o serviço do simulador Qiskit Aer e usá-lo para executar circuitos Qiskit Terra ideais (livre de ruído).
[1]:
import numpy as np
# Import Qiskit
from qiskit import QuantumCircuit
from qiskit import Aer, transpile
from qiskit.tools.visualization import plot_histogram, plot_state_city
import qiskit.quantum_info as qi
O Provedor Aer¶
O provedor Aer
contém uma variedade de backends de simuladores de alta performance para vários métodos de simulação. Os serviços disponíveis no sistema atual podem ser visualizados usando Aer.backends
[2]:
Aer.backends()
[2]:
[AerSimulator('aer_simulator'),
AerSimulator('aer_simulator_statevector'),
AerSimulator('aer_simulator_density_matrix'),
AerSimulator('aer_simulator_stabilizer'),
AerSimulator('aer_simulator_matrix_product_state'),
AerSimulator('aer_simulator_extended_stabilizer'),
AerSimulator('aer_simulator_unitary'),
AerSimulator('aer_simulator_superop'),
QasmSimulator('qasm_simulator'),
StatevectorSimulator('statevector_simulator'),
UnitarySimulator('unitary_simulator'),
PulseSimulator('pulse_simulator')]
O Simulador Aer¶
The main simulator backend of the Aer provider is the AerSimulator
backend. A new simulator backend can be created using Aer.get_backend('aer_simulator')
.
[3]:
simulator = Aer.get_backend('aer_simulator')
O comportamento padrão do serviço AerSimulator
é simular a execução de um dispositivo real. Se um QuantumCircuit
contendo medições for executado ele retornará um dicionário de contagem contendo os valores finais de quaisquer registradores clássicos no circuito. O circuito pode conter portas, medições, resets, condicionais e outras instruções personalizadas do simulador que serão discutidas em outro notebook.
Simulando um circuito quântico¶
The basic operation runs a quantum circuit and returns a counts dictionary of measurement outcomes. Here we run a simple circuit that prepares a 2-qubit Bell-state \(\left|\psi\right\rangle = \frac{1}{2}\left(\left|0,0\right\rangle + \left|1,1 \right\rangle\right)\) and measures both qubits.
[4]:
# Create circuit
circ = QuantumCircuit(2)
circ.h(0)
circ.cx(0, 1)
circ.measure_all()
# Transpile for simulator
simulator = Aer.get_backend('aer_simulator')
circ = transpile(circ, simulator)
# Run and get counts
result = simulator.run(circ).result()
counts = result.get_counts(circ)
plot_histogram(counts, title='Bell-State counts')
[4]:

Retornando resultados de medição para cada repetição (shot)¶
The QasmSimulator
also supports returning a list of measurement outcomes for each individual shot. This is enabled by setting the keyword argument memory=True
in the run
.
[5]:
# Run and get memory
result = simulator.run(circ, shots=10, memory=True).result()
memory = result.get_memory(circ)
print(memory)
['00', '00', '11', '11', '00', '00', '11', '11', '00', '00']
Opções do Simulador Aer¶
The AerSimulator
backend supports a variety of configurable options which can be updated using the set_options
method. See the AerSimulator
API documentation for additional details.
Método de Simulação¶
The AerSimulator
supports a variety of simulation methods, each of which supports a different set of instructions. The method can be set manually using simulator.set_option(method=value)
option, or a simulator backend with a preconfigured method can be obtained directly from the Aer
provider using Aer.get_backend
.
When simulating ideal circuits, changing the method between the exact simulation methods stabilizer
, statevector
, density_matrix
and matrix_product_state
should not change the simulation result (other than usual variations from sampling probabilities for measurement outcomes)
[6]:
# Increase shots to reduce sampling variance
shots = 10000
# Stabilizer simulation method
sim_stabilizer = Aer.get_backend('aer_simulator_stabilizer')
job_stabilizer = sim_stabilizer.run(circ, shots=shots)
counts_stabilizer = job_stabilizer.result().get_counts(0)
# Statevector simulation method
sim_statevector = Aer.get_backend('aer_simulator_statevector')
job_statevector = sim_statevector.run(circ, shots=shots)
counts_statevector = job_statevector.result().get_counts(0)
# Density Matrix simulation method
sim_density = Aer.get_backend('aer_simulator_density_matrix')
job_density = sim_density.run(circ, shots=shots)
counts_density = job_density.result().get_counts(0)
# Matrix Product State simulation method
sim_mps = Aer.get_backend('aer_simulator_matrix_product_state')
job_mps = sim_mps.run(circ, shots=shots)
counts_mps = job_mps.result().get_counts(0)
plot_histogram([counts_stabilizer, counts_statevector, counts_density, counts_mps],
title='Counts for different simulation methods',
legend=['stabilizer', 'statevector',
'density_matrix', 'matrix_product_state'])
[6]:

Método de Simulação Automática¶
The default simulation method is automatic
which will automatically select a one of the other simulation methods for each circuit based on the instructions in those circuits. A fixed simulation method can be specified by by adding the method name when getting the backend, or by setting the method
option on the backend.
Simulação de GPU¶
The statevector
, density_matrix
and unitary
simulators support running on a NVidia GPUs. For these methods the simulation device can also be manually set to CPU or GPU using simulator.set_options(device='GPU')
backend option. If a GPU device is not available setting this option will raise an exception.
[7]:
from qiskit.providers.aer import AerError
# Initialize a GPU backend
# Note that the cloud instance for tutorials does not have a GPU
# so this will raise an exception.
try:
simulator_gpu = Aer.get_backend('aer_simulator')
simulator_gpu.set_options(device='GPU')
except AerError as e:
print(e)
"Invalid simulation device GPU. Available devices are: ['CPU']"
The Aer
provider will also contain preconfigured GPU simulator backends if Qiskit Aer was installed with GPU support on a compatible system:
aer_simulator_statevector_gpu
aer_simulator_density_matrix_gpu
aer_simulator_unitary_gpu
Nota: A versão para GPU do Aer pode ser instalada usando ``pip install qiskit-aer-gpu``.
Precisão da Simulação¶
One of the available simulator options allows setting the float precision for the statevector
, density_matrix
unitary
and superop
methods. This is done using the set_precision="single"
or precision="double"
(default) option:
[8]:
# Configure a single-precision statevector simulator backend
simulator = Aer.get_backend('aer_simulator_statevector')
simulator.set_options(precision='single')
# Run and get counts
result = simulator.run(circ).result()
counts = result.get_counts(circ)
print(counts)
{'11': 509, '00': 515}
Setting the simulation precision applies to both CPU and GPU simulation devices. Single precision will halve the required memory and may provide performance improvements on certain systems.
Instruções de Simulador Personalizadas¶
Salvando o estado do simulador¶
O estado do simulador pode ser salvo em uma variedade de formatos usando instruções do simulador personalizadas.
Método de Circuito |
Descrição |
Métodos Suportados |
---|---|---|
|
Salve o estado do simulador no formato nativo para o método de simulação |
Todos |
|
Salve o estado do simulador como um vetor de estados |
|
|
Salve o estado do simulador como um estabilizador Clifford |
|
|
Salve o estado do simulador como uma matriz de densidade |
|
|
Salve o estado do simulador como uma matriz de estado do produto tensor |
|
|
Salvar o estado do simulador como matriz unitária do circuito executado |
|
|
Salvar o estado do simulador como matriz superoperadora do circuito executado |
|
Note that these instructions are only supported by the Aer simulator and will result in an error if a circuit containing them is run on a non-simulator backend such as an IBM Quantum device.
Salvando o statevector final¶
To save the final statevector of the simulation we can append the circuit with the save_statevector
instruction. Note that this instruction should be applied before any measurements if we do not want to save the collapsed post-measurement state
[9]:
# Construct quantum circuit without measure
circ = QuantumCircuit(2)
circ.h(0)
circ.cx(0, 1)
circ.save_statevector()
# Transpile for simulator
simulator = Aer.get_backend('aer_simulator')
circ = transpile(circ, simulator)
# Run and get statevector
result = simulator.run(circ).result()
statevector = result.get_statevector(circ)
plot_state_city(statevector, title='Bell state')
[9]:

Salvando a unidade do circuito¶
To save the unitary matrix for a QuantumCircuit
we can append the circuit with the save_unitary
instruction. Note that this circuit cannot contain any measurements or resets since these instructions are not supported on for the "unitary"
simulation method
[10]:
# Construct quantum circuit without measure
circ = QuantumCircuit(2)
circ.h(0)
circ.cx(0, 1)
circ.save_unitary()
# Transpile for simulator
simulator = Aer.get_backend('aer_simulator')
circ = transpile(circ, simulator)
# Run and get unitary
result = simulator.run(circ).result()
unitary = result.get_unitary(circ)
print("Circuit unitary:\n", unitary.round(5))
Circuit unitary:
[[ 0.70711+0.j 0.70711-0.j 0. +0.j 0. +0.j]
[ 0. +0.j 0. +0.j 0.70711+0.j -0.70711+0.j]
[ 0. +0.j 0. +0.j 0.70711+0.j 0.70711-0.j]
[ 0.70711+0.j -0.70711+0.j 0. +0.j 0. +0.j]]
Salvando multiplos estados¶
We can also apply save instructions at multiple locations in a circuit. Note that when doing this we must provide a unique label for each instruction to retrieve them from the results
[11]:
# Construct quantum circuit without measure
steps = 5
circ = QuantumCircuit(1)
for i in range(steps):
circ.save_statevector(label=f'psi_{i}')
circ.rx(i * np.pi / steps, 0)
circ.save_statevector(label=f'psi_{steps}')
# Transpile for simulator
simulator = Aer.get_backend('aer_simulator')
circ = transpile(circ, simulator)
# Run and get saved data
result = simulator.run(circ).result()
data = result.data(0)
data
[11]:
{'psi_3': array([0.58778525+0.j , 0. -0.80901699j]),
'psi_2': array([0.95105652+0.j , 0. -0.30901699j]),
'psi_5': array([-1.+0.00000000e+00j, 0.-2.77555756e-16j]),
'psi_1': array([1.+0.j, 0.+0.j]),
'psi_4': array([-0.30901699+0.j , 0. -0.95105652j]),
'psi_0': array([1.+0.j, 0.+0.j])}
Setting the simulator to a custom state¶
The AerSimulator
allows setting a custom simulator state for several of its simulation methods using custom simulator instructions
Método de Circuito |
Descrição |
Métodos Suportados |
---|---|---|
|
Set the simulator state to the specified statevector |
|
|
Set the simulator state to the specified Clifford stabilizer |
|
|
Set the simulator state to the specified density matrix |
|
|
Set the simulator state to the specified unitary matrix |
|
|
Set the simulator state to the specified superoperator matrix |
|
Notes: * These instructions must be applied to all qubits in a circuit, otherwise an exception will be raised. * The input state must also be a valid state (statevector, density matrix, unitary etc) otherwise an exception will be raised. * These instructions can be applied at any location in a circuit and will override the current state with the specified one. Any classical register values (e.g. from preceding measurements) will be unaffected * Set state instructions are only supported by the Aer simulator and will result in an error if a circuit containing them is run on a non-simulator backend such as an IBM Quantum device.
Configurando um vetor de estados personalizado¶
The set_statevector
instruction can be used to set a custom Statevector
state. The input statevector must be valid (\(|\langle\psi|\psi\rangle|=1\))
[12]:
# Generate a random statevector
num_qubits = 2
psi = qi.random_statevector(2 ** num_qubits, seed=100)
# Set initial state to generated statevector
circ = QuantumCircuit(num_qubits)
circ.set_statevector(psi)
circ.save_state()
# Transpile for simulator
simulator = Aer.get_backend('aer_simulator')
circ = transpile(circ, simulator)
# Run and get saved data
result = simulator.run(circ).result()
result.data(0)
[12]:
{'statevector': array([ 0.18572453-0.03102771j, -0.26191269-0.18155865j,
0.12367038-0.47837907j, 0.66510011-0.4200986j ])}
Using the initialize instruction¶
It is also possible to initialize the simulator to a custom statevector using the initialize
instruction. Unlike the set_statevector
instruction this instruction is also supported on real device backends by unrolling to reset and standard gate instructions.
[13]:
# Use initilize instruction to set initial state
circ = QuantumCircuit(num_qubits)
circ.initialize(psi, range(num_qubits))
circ.save_state()
# Transpile for simulator
simulator = Aer.get_backend('aer_simulator')
circ = transpile(circ, simulator)
# Run and get result data
result = simulator.run(circ).result()
result.data(0)
[13]:
{'statevector': array([ 0.18572453-0.03102771j, -0.26191269-0.18155865j,
0.12367038-0.47837907j, 0.66510011-0.4200986j ])}
Definindo uma matriz de densidade personalizada¶
The set_density_matrix
instruction can be used to set a custom DensityMatrix
state. The input density matrix must be valid (\(Tr[\rho]=1, \rho \ge 0\))
[14]:
num_qubits = 2
rho = qi.random_density_matrix(2 ** num_qubits, seed=100)
circ = QuantumCircuit(num_qubits)
circ.set_density_matrix(rho)
circ.save_state()
# Transpile for simulator
simulator = Aer.get_backend('aer_simulator')
circ = transpile(circ, simulator)
# Run and get saved data
result = simulator.run(circ).result()
result.data(0)
[14]:
{'density_matrix': array([[ 0.2075308 -3.11427124e-18j, 0.13161422-1.76084787e-02j,
0.0442826 +7.74270413e-02j, 0.04852053-1.30317117e-02j],
[ 0.13161422+1.76084787e-02j, 0.20106116-2.89376869e-18j,
0.02568549-3.68981173e-02j, 0.0482903 -4.36791212e-02j],
[ 0.0442826 -7.74270413e-02j, 0.02568549+3.68981173e-02j,
0.39731492+6.09745953e-18j, -0.01114025-1.34264228e-01j],
[ 0.04852053+1.30317117e-02j, 0.0482903 +4.36791212e-02j,
-0.01114025+1.34264228e-01j, 0.19409312-8.94195941e-20j]])}
Configurando um estado estabilizador personalizado¶
The set_stabilizer
instruction can be used to set a custom Clifford
stabilizer state. The input stabilizer must be a valid Clifford
.
[15]:
# Generate a random Clifford C
num_qubits = 2
stab = qi.random_clifford(num_qubits, seed=100)
# Set initial state to stabilizer state C|0>
circ = QuantumCircuit(num_qubits)
circ.set_stabilizer(stab)
circ.save_state()
# Transpile for simulator
simulator = Aer.get_backend('aer_simulator')
circ = transpile(circ, simulator)
# Run and get saved data
result = simulator.run(circ).result()
result.data(0)
[15]:
{'stabilizer': {'destabilizer': ['-XZ', '-YX'], 'stabilizer': ['+ZZ', '-IZ']}}
Definindo uma unidade personalizada¶
The set_unitary
instruction can be used to set a custom unitary Operator
state. The input unitary matrix must be valid (\(U^\dagger U=\mathbb{1}\))
[16]:
# Generate a random unitary
num_qubits = 2
unitary = qi.random_unitary(2 ** num_qubits, seed=100)
# Set initial state to unitary
circ = QuantumCircuit(num_qubits)
circ.set_unitary(unitary)
circ.save_state()
# Transpile for simulator
simulator = Aer.get_backend('aer_simulator')
circ = transpile(circ, simulator)
# Run and get saved data
result = simulator.run(circ).result()
result.data(0)
[16]:
{'unitary': array([[-0.44885724-0.26721573j, 0.10468034-0.00288681j,
0.4631425 +0.15474915j, -0.11151309-0.68210936j],
[-0.37279054-0.38484834j, 0.3820592 -0.49653433j,
0.14132327-0.17428515j, 0.19643043+0.48111423j],
[ 0.2889092 +0.58750499j, 0.39509694-0.22036424j,
0.49498355+0.2388685j , 0.25404989-0.00995706j],
[ 0.01830684+0.10524311j, 0.62584001+0.01343146j,
-0.52174025-0.37003296j, 0.12232823-0.41548904j]])}
[17]:
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
Version Information
Qiskit Software | Version |
---|---|
Qiskit | 0.25.0 |
Terra | 0.17.0 |
Aer | 0.8.0 |
Ignis | 0.6.0 |
Aqua | 0.9.0 |
IBM Q Provider | 0.12.2 |
System information | |
Python | 3.7.7 (default, May 6 2020, 04:59:01) [Clang 4.0.1 (tags/RELEASE_401/final)] |
OS | Darwin |
CPUs | 6 |
Memory (Gb) | 32.0 |
Fri Apr 02 11:48:23 2021 EDT |
This code is a part of Qiskit
© Copyright IBM 2017, 2021.
This code is licensed under the Apache License, Version 2.0. You may
obtain a copy of this license in the LICENSE.txt file in the root directory
of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
Any modifications or derivative works of this code must retain this
copyright notice, and modified files need to carry a notice indicating
that they have been altered from the originals.