qiskit.quantum_info.PauliTable¶
-
class
PauliTable
(data)[código fonte]¶ Symplectic representation of a list Pauli matrices.
Symplectic Representation
The symplectic representation of a single-qubit Pauli matrix is a pair of boolean values \([x, z]\) such that the Pauli matrix is given by \(P = (-i)^{z * x} \sigma_z^z.\sigma_x^x\). The correspondence between labels, symplectic representation, and matrices for single-qubit Paulis are shown in Table 1.
Table 8 Pauli Representations¶ Label
Symplectic
Matrix
"I"
\([0, 0]\)
\(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\)
"X"
\([1, 0]\)
\(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\)
"Y"
\([1, 1]\)
\(\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}\)
"Z"
\([0, 1]\)
\(\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\)
The full Pauli table is a M x 2N boolean matrix:
\[\begin{split}\left(\begin{array}{ccc|ccc} x_{0,0} & ... & x_{0,N-1} & z_{0,0} & ... & z_{0,N-1} \\ x_{1,0} & ... & x_{1,N-1} & z_{1,0} & ... & z_{1,N-1} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ x_{M-1,0} & ... & x_{M-1,N-1} & z_{M-1,0} & ... & z_{M-1,N-1} \end{array}\right)\end{split}\]where each row is a block vector \([X_i, Z_i]\) with \(X = [x_{i,0}, ..., x_{i,N-1}]\), \(Z = [z_{i,0}, ..., z_{i,N-1}]\) is the symplectic representation of an N-qubit Pauli. This representation is based on reference [1].
PauliTable’s can be created from a list of labels using
from_labels()
, and converted to a list of labels or a list of matrices usingto_labels()
andto_matrix()
respectively.Group Product
The Pauli’s in the Pauli table do not represent the full Pauli as they are restricted to having +1 phase. The dot-product for the Pauli’s is defined to discard any phase obtained from matrix multiplication so that we have \(X.Z = Z.X = Y\), etc. This means that for the PauliTable class the operator methods
compose()
anddot()
are equivalent.A.B
I
X
Y
Z
I
I
X
Y
Z
X
X
I
Z
Y
Y
Y
Z
I
X
Z
Z
Y
X
I
Qubit Ordering
The qubits are ordered in the table such the least significant qubit [x_{i, 0}, z_{i, 0}] is the first element of each of the \(X_i, Z_i\) vector blocks. This is the opposite order to position in string labels or matrix tensor products where the least significant qubit is the right-most string character. For example Pauli
"ZX"
has"X"
on qubit-0 and"Z"
on qubit 1, and would have symplectic vectors \(x=[1, 0]\), \(z=[0, 1]\).Data Access
Subsets of rows can be accessed using the list access
[]
operator and will return a table view of part of the PauliTable. The underlying Numpy array can be directly accessed using thearray
property, and the sub-arrays for only the X or Z blocks can be accessed using theX
andZ
properties respectively.Iteration
Rows in the Pauli table can be iterated over like a list. Iteration can also be done using the label or matrix representation of each row using the
label_iter()
andmatrix_iter()
methods.Referências
S. Aaronson, D. Gottesman, Improved Simulation of Stabilizer Circuits, Phys. Rev. A 70, 052328 (2004). arXiv:quant-ph/0406196
Initialize the PauliTable.
- Parâmetros
data (array or str or ScalarOp or PauliTable) – input data.
- Levanta
QiskitError – if input array is invalid shape.
- Additional Information:
The input array is not copied so multiple Pauli tables can share the same underlying array.
-
__init__
(data)[código fonte]¶ Initialize the PauliTable.
- Parâmetros
data (array or str or ScalarOp or PauliTable) – input data.
- Levanta
QiskitError – if input array is invalid shape.
- Additional Information:
The input array is not copied so multiple Pauli tables can share the same underlying array.
Methods
__init__
(data)Initialize the PauliTable.
adjoint
()Return the adjoint of the Operator.
anticommutes_with_all
(other)Return indexes of rows that commute other.
argsort
([weight])Return indices for sorting the rows of the table.
commutes
(pauli)Return list of commutation properties for each row with a Pauli.
commutes_with_all
(other)Return indexes of rows that commute other.
compose
(other[, qargs, front])Return the compose output product of two tables.
Not implemented.
copy
()Make a deep copy of current operator.
delete
(ind[, qubit])Return a copy with Pauli rows deleted from table.
dot
(other[, qargs])Return the dot output product of two tables.
expand
(other)Return the expand output product of two tables.
from_labels
(labels)Construct a PauliTable from a list of Pauli strings.
input_dims
([qargs])Return tuple of input dimension for specified subsystems.
insert
(ind, value[, qubit])Insert Pauli’s into the table.
Return a label representation iterator.
matrix_iter
([sparse])Return a matrix representation iterator.
output_dims
([qargs])Return tuple of output dimension for specified subsystems.
power
(n)Return the compose of a operator with itself n times.
reshape
([input_dims, output_dims, num_qubits])Return a shallow copy with reshaped input and output subsystem dimensions.
sort
([weight])Sort the rows of the table.
tensor
(other)Return the tensor output product of two tables.
to_labels
([array])Convert a PauliTable to a list Pauli string labels.
to_matrix
([sparse, array])Convert to a list or array of Pauli matrices.
Not implemented.
unique
([return_index, return_counts])Return unique Paulis from the table.
Attributes
The X block of the
array
.The Z block of the
array
.The underlying boolean array.
Return tuple (input_shape, output_shape).
Return the number of qubits if a N-qubit operator or None otherwise.
Return the qargs for the operator.
The full shape of the
array()
The number of Pauli rows in the table.
-
adjoint
()¶ Return the adjoint of the Operator.
-
anticommutes_with_all
(other)[código fonte]¶ Return indexes of rows that commute other.
If other is a multi-row Pauli table the returned vector indexes rows of the current PauliTable that anti-commute with all Pauli’s in other. If no rows satisfy the condition the returned array will be empty.
- Parâmetros
other (PauliTable) – a single Pauli or multi-row PauliTable.
- Retorna
index array of the anti-commuting rows.
- Tipo de retorno
array
-
argsort
(weight=False)[código fonte]¶ Return indices for sorting the rows of the table.
The default sort method is lexicographic sorting by qubit number. By using the weight kwarg the output can additionally be sorted by the number of non-identity terms in the Pauli, where the set of all Pauli’s of a given weight are still ordered lexicographically.
- Parâmetros
weight (bool) – optionally sort by weight if True (Default: False).
- Retorna
the indices for sorting the table.
- Tipo de retorno
array
-
property
array
¶ The underlying boolean array.
-
commutes
(pauli)[código fonte]¶ Return list of commutation properties for each row with a Pauli.
The returned vector is the same length as the size of the table and contains True for rows that commute with the Pauli, and False for the rows that anti-commute.
- Parâmetros
pauli (PauliTable) – a single Pauli row.
- Retorna
The boolean vector of which rows commute or anti-commute.
- Tipo de retorno
array
- Levanta
QiskitError – if input is not a single Pauli row.
-
commutes_with_all
(other)[código fonte]¶ Return indexes of rows that commute other.
If other is a multi-row Pauli table the returned vector indexes rows of the current PauliTable that commute with all Pauli’s in other. If no rows satisfy the condition the returned array will be empty.
- Parâmetros
other (PauliTable) – a single Pauli or multi-row PauliTable.
- Retorna
index array of the commuting rows.
- Tipo de retorno
array
-
compose
(other, qargs=None, front=True)[código fonte]¶ Return the compose output product of two tables.
This returns the combination of the dot product of all Paulis in the current table with all Pauli’s in the other table and discards the complex phase from the product. Note that for PauliTables this method is equivalent to
dot()
and hence thefront
kwarg does not change the output.Example
from qiskit.quantum_info.operators import PauliTable current = PauliTable.from_labels(['I', 'X']) other = PauliTable.from_labels(['Y', 'Z']) print(current.compose(other))
PauliTable: ['Y', 'Z', 'Z', 'Y']
- Parâmetros
other (PauliTable) – another PauliTable.
qargs (None or list) – qubits to apply dot product on (Default: None).
front (bool) – If True use dot composition method [default: False].
- Retorna
the compose outer product table.
- Tipo de retorno
- Levanta
QiskitError – if other cannot be converted to a PauliTable.
-
conjugate
()[código fonte]¶ Not implemented.
-
copy
()¶ Make a deep copy of current operator.
-
delete
(ind, qubit=False)[código fonte]¶ Return a copy with Pauli rows deleted from table.
When deleting qubits the qubit index is the same as the column index of the underlying
X
andZ
arrays.- Parâmetros
ind (int or list) – index(es) to delete.
qubit (bool) – if True delete qubit columns, otherwise delete Pauli rows (Default: False).
- Retorna
the resulting table with the entries removed.
- Tipo de retorno
- Levanta
QiskitError – if ind is out of bounds for the array size or number of qubits.
-
property
dim
¶ Return tuple (input_shape, output_shape).
-
dot
(other, qargs=None)[código fonte]¶ Return the dot output product of two tables.
This returns the combination of the dot product of all Paulis in the current table with all Pauli’s in the other table and discards the complex phase from the product. Note that for PauliTables this method is equivalent to
compose()
.Example
from qiskit.quantum_info.operators import PauliTable current = PauliTable.from_labels(['I', 'X']) other = PauliTable.from_labels(['Y', 'Z']) print(current.dot(other))
PauliTable: ['Y', 'Z', 'Z', 'Y']
- Parâmetros
other (PauliTable) – another PauliTable.
qargs (None or list) – qubits to apply dot product on (Default: None).
- Retorna
the dot outer product table.
- Tipo de retorno
- Levanta
QiskitError – if other cannot be converted to a PauliTable.
-
expand
(other)[código fonte]¶ Return the expand output product of two tables.
This returns the combination of the tensor product of all Paulis in the other table with all Pauli’s in the current table, with the current tables qubits being the least-significant in the returned table. This is the opposite tensor order to
tensor()
.Example
from qiskit.quantum_info.operators import PauliTable current = PauliTable.from_labels(['I', 'X']) other = PauliTable.from_labels(['Y', 'Z']) print(current.expand(other))
PauliTable: ['YI', 'YX', 'ZI', 'ZX']
- Parâmetros
other (PauliTable) – another PauliTable.
- Retorna
the expand outer product table.
- Tipo de retorno
- Levanta
QiskitError – if other cannot be converted to a PauliTable.
-
classmethod
from_labels
(labels)[código fonte]¶ Construct a PauliTable from a list of Pauli strings.
- Parâmetros
labels (list) – Pauli string label(es).
- Retorna
the constructed PauliTable.
- Tipo de retorno
- Levanta
QiskitError – If the input list is empty or contains invalid
Pauli strings. –
-
input_dims
(qargs=None)¶ Return tuple of input dimension for specified subsystems.
-
insert
(ind, value, qubit=False)[código fonte]¶ Insert Pauli’s into the table.
When inserting qubits the qubit index is the same as the column index of the underlying
X
andZ
arrays.- Parâmetros
ind (int) – index to insert at.
value (PauliTable) – values to insert.
qubit (bool) – if True delete qubit columns, otherwise delete Pauli rows (Default: False).
- Retorna
the resulting table with the entries inserted.
- Tipo de retorno
- Levanta
QiskitError – if the insertion index is invalid.
-
label_iter
()[código fonte]¶ Return a label representation iterator.
This is a lazy iterator that converts each row into the string label only as it is used. To convert the entire table to labels use the
to_labels()
method.- Retorna
label iterator object for the PauliTable.
- Tipo de retorno
LabelIterator
-
matrix_iter
(sparse=False)[código fonte]¶ Return a matrix representation iterator.
This is a lazy iterator that converts each row into the Pauli matrix representation only as it is used. To convert the entire table to matrices use the
to_matrix()
method.- Parâmetros
sparse (bool) – optionally return sparse CSR matrices if True, otherwise return Numpy array matrices (Default: False)
- Retorna
matrix iterator object for the PauliTable.
- Tipo de retorno
MatrixIterator
-
property
num_qubits
¶ Return the number of qubits if a N-qubit operator or None otherwise.
-
output_dims
(qargs=None)¶ Return tuple of output dimension for specified subsystems.
-
power
(n)¶ Return the compose of a operator with itself n times.
- Parâmetros
n (int) – the number of times to compose with self (n>0).
- Retorna
the n-times composed operator.
- Tipo de retorno
- Levanta
QiskitError – if the input and output dimensions of the operator are not equal, or the power is not a positive integer.
-
property
qargs
¶ Return the qargs for the operator.
-
reshape
(input_dims=None, output_dims=None, num_qubits=None)¶ Return a shallow copy with reshaped input and output subsystem dimensions.
- Parâmetros
input_dims (None or tuple) – new subsystem input dimensions. If None the original input dims will be preserved [Default: None].
output_dims (None or tuple) – new subsystem output dimensions. If None the original output dims will be preserved [Default: None].
num_qubits (None or int) – reshape to an N-qubit operator [Default: None].
- Retorna
returns self with reshaped input and output dimensions.
- Tipo de retorno
BaseOperator
- Levanta
QiskitError – if combined size of all subsystem input dimension or subsystem output dimensions is not constant.
-
property
size
¶ The number of Pauli rows in the table.
-
sort
(weight=False)[código fonte]¶ Sort the rows of the table.
The default sort method is lexicographic sorting by qubit number. By using the weight kwarg the output can additionally be sorted by the number of non-identity terms in the Pauli, where the set of all Pauli’s of a given weight are still ordered lexicographically.
Example
Consider sorting all a random ordering of all 2-qubit Paulis
from numpy.random import shuffle from qiskit.quantum_info.operators import PauliTable # 2-qubit labels labels = ['II', 'IX', 'IY', 'IZ', 'XI', 'XX', 'XY', 'XZ', 'YI', 'YX', 'YY', 'YZ', 'ZI', 'ZX', 'ZY', 'ZZ'] # Shuffle Labels shuffle(labels) pt = PauliTable.from_labels(labels) print('Initial Ordering') print(pt) # Lexicographic Ordering srt = pt.sort() print('Lexicographically sorted') print(srt) # Weight Ordering srt = pt.sort(weight=True) print('Weight sorted') print(srt)
Initial Ordering PauliTable: ['ZZ', 'XY', 'IZ', 'YY', 'YI', 'ZY', 'II', 'IX', 'ZX', 'XX', 'XZ', 'ZI', 'YZ', 'IY', 'XI', 'YX'] Lexicographically sorted PauliTable: ['II', 'IX', 'IY', 'IZ', 'XI', 'XX', 'XY', 'XZ', 'YI', 'YX', 'YY', 'YZ', 'ZI', 'ZX', 'ZY', 'ZZ'] Weight sorted PauliTable: ['II', 'IX', 'IY', 'IZ', 'XI', 'YI', 'ZI', 'XX', 'XY', 'XZ', 'YX', 'YY', 'YZ', 'ZX', 'ZY', 'ZZ']
- Parâmetros
weight (bool) – optionally sort by weight if True (Default: False).
- Retorna
a sorted copy of the original table.
- Tipo de retorno
-
tensor
(other)[código fonte]¶ Return the tensor output product of two tables.
This returns the combination of the tensor product of all Paulis in the current table with all Pauli’s in the other table, with the other tables qubits being the least-significant in the returned table. This is the opposite tensor order to
expand()
.Example
from qiskit.quantum_info.operators import PauliTable current = PauliTable.from_labels(['I', 'X']) other = PauliTable.from_labels(['Y', 'Z']) print(current.tensor(other))
PauliTable: ['IY', 'IZ', 'XY', 'XZ']
- Parâmetros
other (PauliTable) – another PauliTable.
- Retorna
the tensor outer product table.
- Tipo de retorno
- Levanta
QiskitError – if other cannot be converted to a PauliTable.
-
to_labels
(array=False)[código fonte]¶ Convert a PauliTable to a list Pauli string labels.
For large PauliTables converting using the
array=True
kwarg will be more efficient since it allocates memory for the full Numpy array of labels in advance.Table 9 Pauli Representations¶ Label
Symplectic
Matrix
"I"
\([0, 0]\)
\(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\)
"X"
\([1, 0]\)
\(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\)
"Y"
\([1, 1]\)
\(\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}\)
"Z"
\([0, 1]\)
\(\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\)
- Parâmetros
array (bool) – return a Numpy array if True, otherwise return a list (Default: False).
- Retorna
The rows of the PauliTable in label form.
- Tipo de retorno
list or array
-
to_matrix
(sparse=False, array=False)[código fonte]¶ Convert to a list or array of Pauli matrices.
For large PauliTables converting using the
array=True
kwarg will be more efficient since it allocates memory a full rank-3 Numpy array of matrices in advance.Table 10 Pauli Representations¶ Label
Symplectic
Matrix
"I"
\([0, 0]\)
\(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\)
"X"
\([1, 0]\)
\(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\)
"Y"
\([1, 1]\)
\(\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}\)
"Z"
\([0, 1]\)
\(\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\)
- Parâmetros
sparse (bool) – if True return sparse CSR matrices, otherwise return dense Numpy arrays (Default: False).
array (bool) – return as rank-3 numpy array if True, otherwise return a list of Numpy arrays (Default: False).
- Retorna
A list of dense Pauli matrices if array=False and sparse=False. list: A list of sparse Pauli matrices if array=False and sparse=True. array: A dense rank-3 array of Pauli matrices if array=True.
- Tipo de retorno
list
-
transpose
()[código fonte]¶ Not implemented.
-
unique
(return_index=False, return_counts=False)[código fonte]¶ Return unique Paulis from the table.
Example
from qiskit.quantum_info.operators import PauliTable pt = PauliTable.from_labels(['X', 'Y', 'X', 'I', 'I', 'Z', 'X', 'Z']) unique = pt.unique() print(unique)
PauliTable: ['X', 'Y', 'I', 'Z']
- Parâmetros
return_index (bool) – If True, also return the indices that result in the unique array. (Default: False)
return_counts (bool) – If True, also return the number of times each unique item appears in the table.
- Retorna
- unique
the table of the unique rows.
- unique_indices: np.ndarray, optional
The indices of the first occurrences of the unique values in the original array. Only provided if
return_index
is True.- unique_counts: np.array, optional
The number of times each of the unique values comes up in the original array. Only provided if
return_counts
is True.
- Tipo de retorno