qiskit.aqua.components.multiclass_extensions.OneAgainstRest¶
-
class
OneAgainstRest
[código fonte]¶ The One Against Rest multiclass extension.
For an \(n\)-class problem, the one-against-rest method constructs \(n\) SVM classifiers, with the \(i\)-th classifier separating class \(i\) from all the remaining classes, \(\forall i \in \{1, 2, \ldots, n\}\). When the \(n\) classifiers are combined to make the final decision, the classifier that generates the highest value from its decision function is selected as the winner and the corresponding class label is returned.
-
__init__
()[código fonte]¶ Initialize self. See help(type(self)) for accurate signature.
Methods
__init__
()Initialize self.
predict
(x)Applying multiple estimators for prediction.
set_estimator
(estimator_cls[, params])Called internally to set
Estimator
and parameters :type estimator_cls:Callable
[[List
],Estimator
] :param estimator_cls: AnEstimator
class :type params:Optional
[List
] :param params: Parameters for the estimatortest
(x, y)Testing multiple estimators each for distinguishing a pair of classes.
train
(x, y)Training multiple estimators each for distinguishing a pair of classes.
-
predict
(x)[código fonte]¶ Applying multiple estimators for prediction.
- Parâmetros
x (numpy.ndarray) – NxD array
- Retorna
predicted labels, Nx1 array
- Tipo de retorno
numpy.ndarray
-
set_estimator
(estimator_cls, params=None)¶ Called internally to set
Estimator
and parameters :type estimator_cls:Callable
[[List
],Estimator
] :param estimator_cls: AnEstimator
class :type params:Optional
[List
] :param params: Parameters for the estimator- Tipo de retorno
None
-
test
(x, y)[código fonte]¶ Testing multiple estimators each for distinguishing a pair of classes.
- Parâmetros
x (numpy.ndarray) – input points
y (numpy.ndarray) – input labels
- Retorna
accuracy
- Tipo de retorno
float
-
train
(x, y)[código fonte]¶ Training multiple estimators each for distinguishing a pair of classes.
- Parâmetros
x (numpy.ndarray) – input points
y (numpy.ndarray) – input labels
- Levanta
Exception – given all data points are assigned to the same class, the prediction would be boring
-