아시아 통화 가격 하락¶
소개¶
아시아 장벽 분산은 3가지 서로 다른 옵션 유형의 조합으로, Qiskit 재무 옵션 가격 체계가 지원하는 여러 가지 기능을 결합한 것입니다.
아시아 옵션: 페이오프는 고려된 시간 범위에 대한 평균 가격에 의존합니다.
장벽 옵션: 특정 임계값이 고려된 시간 범위 내에서 임의의 시간에 초과하는 경우, 지불인은 0입니다.
(Bull) Spread: The payoff follows a piecewise linear function (depending on the average price) starting at zero, increasing linear, staying constant.
Suppose strike prices \(K_1 < K_2\) and time periods \(t=1,2\), with corresponding spot prices \((S_1, S_2)\) following a given multivariate distribution (e.g. generated by some stochastic process), and a barrier threshold \(B>0\). The corresponding payoff function is defined as
In the following, a quantum algorithm based on amplitude estimation is used to estimate the expected payoff, i.e., the fair price before discounting, for the option
The approximation of the objective function and a general introduction to option pricing and risk analysis on quantum computers are given in the following papers:
Quantum Risk Analysis. Woerner, Egger. 2018.
Option Pricing using Quantum Computers. Stamatopoulos et al. 2019.
[1]:
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from scipy.interpolate import griddata
%matplotlib inline
import numpy as np
from qiskit import QuantumRegister, QuantumCircuit, Aer, execute, AncillaRegister, transpile
from qiskit.circuit.library import IntegerComparator, WeightedAdder, LogNormalDistribution, LinearAmplitudeFunction
from qiskit.aqua.algorithms import IterativeAmplitudeEstimation
불확실성 모델¶
We construct a circuit factory to load a multivariate log-normal random distribution into a quantum state on \(n\) qubits. For every dimension \(j = 1,\ldots,d\), the distribution is truncated to a given interval \([\text{low}_j, \text{high}_j]\) and discretized using \(2^{n_j}\) grid points, where \(n_j\) denotes the number of qubits used to represent dimension \(j\), i.e., \(n_1+\ldots+n_d = n\). The unitary operator corresponding to the circuit factory implements the following:
where \(p_{i_1\ldots i_d}\) denote the probabilities corresponding to the truncated and discretized distribution and where \(i_j\) is mapped to the right interval using the affine map:
단순하게 하기 위해, 우리는 두 주가가 독립적이고 동일하게 분배된다고 가정한다. 이러한 가정은 단지 파라미터화를 단순화하고, 더 복잡하게 완화될 수 있고 또한 다변량 분포를 상관시킬 수 있다. 현재 구현에 대한 유일한 중요한 가정은 상이한 치수의 분할 그리드가 동일한 스텝 크기를 갖는다는 것이다.
[2]:
# number of qubits per dimension to represent the uncertainty
num_uncertainty_qubits = 2
# parameters for considered random distribution
S = 2.0 # initial spot price
vol = 0.4 # volatility of 40%
r = 0.05 # annual interest rate of 4%
T = 40 / 365 # 40 days to maturity
# resulting parameters for log-normal distribution
mu = ((r - 0.5 * vol**2) * T + np.log(S))
sigma = vol * np.sqrt(T)
mean = np.exp(mu + sigma**2/2)
variance = (np.exp(sigma**2) - 1) * np.exp(2*mu + sigma**2)
stddev = np.sqrt(variance)
# lowest and highest value considered for the spot price; in between, an equidistant discretization is considered.
low = np.maximum(0, mean - 3*stddev)
high = mean + 3*stddev
# map to higher dimensional distribution
# for simplicity assuming dimensions are independent and identically distributed)
dimension = 2
num_qubits=[num_uncertainty_qubits]*dimension
low=low*np.ones(dimension)
high=high*np.ones(dimension)
mu=mu*np.ones(dimension)
cov=sigma**2*np.eye(dimension)
# construct circuit factory
u = LogNormalDistribution(num_qubits=num_qubits, mu=mu, sigma=cov, bounds=(list(zip(low, high))))
[3]:
# plot PDF of uncertainty model
x = [ v[0] for v in u.values ]
y = [ v[1] for v in u.values ]
z = u.probabilities
#z = map(float, z)
#z = list(map(float, z))
resolution = np.array([2**n for n in num_qubits])*1j
grid_x, grid_y = np.mgrid[min(x):max(x):resolution[0], min(y):max(y):resolution[1]]
grid_z = griddata((x, y), z, (grid_x, grid_y))
fig = plt.figure(figsize=(10, 8))
ax = fig.gca(projection='3d')
ax.plot_surface(grid_x, grid_y, grid_z, cmap=plt.cm.Spectral)
ax.set_xlabel('Spot Price $S_1$ (\$)', size=15)
ax.set_ylabel('Spot Price $S_2$ (\$)', size=15)
ax.set_zlabel('Probability (\%)', size=15)
plt.show()

페이오프 함수¶
For simplicity, we consider the sum of the spot prices instead of their average. The result can be transformed to the average by just dividing it by 2.
지불 함수는 현물 가격의 합이 \((S_1 + S_2)\) 보다 적고 현물 가격의 합이 \(K_2\).에 도달 할 때까지 선형 적으로 증가하는 한 0이다. 그런 다음 두 현물 가격이 장벽 임계 값을 초과하지 않는 한 \(K_2 - K_1\), 보수는 즉시 0으로 내려간다. \((S_1 + S_2) \geq K_1\) 과 같은 경우, 구현은 먼저 가중치 합계 연산자를 사용하여 현물 가격의 합계를 ancilla 레지스터로 계산 한 다음 비교기를 사용하여 ancilla 큐 비트를 \(\big|0\rangle\) 에서 \(\big|1\rangle\) 뒤집는다.. 이 ancilla는 페이오프함수의 선형 부분을 제어하는 데 사용된다.
In addition, we add another ancilla variable for each time step and use additional comparators to check whether \(S_1\), respectively \(S_2\), exceed the barrier threshold \(B\). The payoff function is only applied if \(S_1, S_2 \leq B\).
The linear part itself is approximated as follows. We exploit the fact that \(\sin^2(y + \pi/4) \approx y + 1/2\) for small \(|y|\). Thus, for a given approximation scaling factor \(c_\text{approx} \in [0, 1]\) and \(x \in [0, 1]\) we consider
for small \(c_\text{approx}\).
다음과 같이 작동하는 연산자를 쉽게 구성할 수 있습니다.
제어된 Y-회전을 이용하자.
Eventually, we are interested in the probability of measuring \(\big|1\rangle\) in the last qubit, which corresponds to \(\sin^2(a*x+b)\). Together with the approximation above, this allows to approximate the values of interest. The smaller we choose \(c_\text{approx}\), the better the approximation. However, since we are then estimating a property scaled by \(c_\text{approx}\), the number of evaluation qubits \(m\) needs to be adjusted accordingly.
For more details on the approximation, we refer to: Quantum Risk Analysis. Woerner, Egger. 2018.
Since the weighted sum operator (in its current implementation) can only sum up integers, we need to map from the original ranges to the representable range to estimate the result, and reverse this mapping before interpreting the result. The mapping essentially corresponds to the affine mapping described in the context of the uncertainty model above.
[4]:
# determine number of qubits required to represent total loss
weights = []
for n in num_qubits:
for i in range(n):
weights += [2**i]
# create aggregation circuit
agg = WeightedAdder(sum(num_qubits), weights)
n_s = agg.num_sum_qubits
n_aux = agg.num_qubits - n_s - agg.num_state_qubits # number of additional qubits
[5]:
# set the strike price (should be within the low and the high value of the uncertainty)
strike_price_1 = 3
strike_price_2 = 4
# set the barrier threshold
barrier = 2.5
# map strike prices and barrier threshold from [low, high] to {0, ..., 2^n-1}
max_value = 2**n_s - 1
low_ = low[0]
high_ = high[0]
mapped_strike_price_1 = (strike_price_1 - dimension*low_) / (high_ - low_) * (2**num_uncertainty_qubits - 1)
mapped_strike_price_2 = (strike_price_2 - dimension*low_) / (high_ - low_) * (2**num_uncertainty_qubits - 1)
mapped_barrier = (barrier - low) / (high - low) * (2**num_uncertainty_qubits - 1)
[6]:
# condition and condition result
conditions = []
barrier_thresholds = [2]*dimension
n_aux_conditions = 0
for i in range(dimension):
# target dimension of random distribution and corresponding condition (which is required to be True)
comparator = IntegerComparator(num_qubits[i], mapped_barrier[i] + 1, geq=False)
n_aux_conditions = max(n_aux_conditions, comparator.num_ancillas)
conditions += [comparator]
[7]:
# set the approximation scaling for the payoff function
c_approx = 0.25
# setup piecewise linear objective fcuntion
breakpoints = [0, mapped_strike_price_1, mapped_strike_price_2]
slopes = [0, 1, 0]
offsets = [0, 0, mapped_strike_price_2 - mapped_strike_price_1]
f_min = 0
f_max = mapped_strike_price_2 - mapped_strike_price_1
objective = LinearAmplitudeFunction(
n_s,
slopes,
offsets,
domain=(0, max_value),
image=(f_min, f_max),
rescaling_factor=c_approx,
breakpoints=breakpoints
)
[8]:
# define overall multivariate problem
qr_state = QuantumRegister(u.num_qubits, 'state') # to load the probability distribution
qr_obj = QuantumRegister(1, 'obj') # to encode the function values
ar_sum = AncillaRegister(n_s, 'sum') # number of qubits used to encode the sum
ar_cond = AncillaRegister(len(conditions) + 1, 'conditions')
ar = AncillaRegister(max(n_aux, n_aux_conditions, objective.num_ancillas), 'work') # additional qubits
objective_index = u.num_qubits
# define the circuit
asian_barrier_spread = QuantumCircuit(qr_state, qr_obj, ar_cond, ar_sum, ar)
# load the probability distribution
asian_barrier_spread.append(u, qr_state)
# apply the conditions
for i, cond in enumerate(conditions):
state_qubits = qr_state[(num_uncertainty_qubits * i):(num_uncertainty_qubits * (i + 1))]
asian_barrier_spread.append(cond, state_qubits + [ar_cond[i]] + ar[:cond.num_ancillas])
# aggregate the conditions on a single qubit
asian_barrier_spread.mcx(ar_cond[:-1], ar_cond[-1])
# apply the aggregation function controlled on the condition
asian_barrier_spread.append(agg.control(), [ar_cond[-1]] + qr_state[:] + ar_sum[:] + ar[:n_aux])
# apply the payoff function
asian_barrier_spread.append(objective, ar_sum[:] + qr_obj[:] + ar[:objective.num_ancillas])
# uncompute the aggregation
asian_barrier_spread.append(agg.inverse().control(), [ar_cond[-1]] + qr_state[:] + ar_sum[:] + ar[:n_aux])
# uncompute the conditions
asian_barrier_spread.mcx(ar_cond[:-1], ar_cond[-1])
for j, cond in enumerate(reversed(conditions)):
i = len(conditions) - j - 1
state_qubits = qr_state[(num_uncertainty_qubits * i):(num_uncertainty_qubits * (i + 1))]
asian_barrier_spread.append(cond.inverse(), state_qubits + [ar_cond[i]] + ar[:cond.num_ancillas])
print(asian_barrier_spread.draw())
print('objective qubit index', objective_index)
┌───────┐┌──────┐ ┌───────────┐ ┌──────────────┐»
state_0: ┤0 ├┤0 ├─────────────┤1 ├──────┤1 ├»
│ ││ │ │ │ │ │»
state_1: ┤1 ├┤1 ├─────────────┤2 ├──────┤2 ├»
│ P(X) ││ │┌──────┐ │ │ │ │»
state_2: ┤2 ├┤ ├┤0 ├─────┤3 ├──────┤3 ├»
│ ││ ││ │ │ │ │ │»
state_3: ┤3 ├┤ ├┤1 ├─────┤4 ├──────┤4 ├»
└───────┘│ ││ │ │ │┌────┐│ │»
obj_0: ─────────┤ ├┤ ├─────┤ ├┤3 ├┤ ├»
│ ││ │ │ ││ ││ │»
conditions_0: ─────────┤2 ├┤ ├──■──┤ ├┤ ├┤ ├»
│ cmp ││ │ │ │ ││ ││ │»
conditions_1: ─────────┤ ├┤2 ├──■──┤ ├┤ ├┤ ├»
│ ││ cmp │┌─┴─┐│ c_adder ││ ││ c_adder_dg │»
conditions_2: ─────────┤ ├┤ ├┤ X ├┤0 ├┤ ├┤0 ├»
│ ││ │└───┘│ ││ ││ │»
sum_0: ─────────┤ ├┤ ├─────┤5 ├┤0 ├┤5 ├»
│ ││ │ │ ││ ││ │»
sum_1: ─────────┤ ├┤ ├─────┤6 ├┤1 F ├┤6 ├»
│ ││ │ │ ││ ││ │»
sum_2: ─────────┤ ├┤ ├─────┤7 ├┤2 ├┤7 ├»
│ ││ │ │ ││ ││ │»
work_0: ─────────┤3 ├┤3 ├─────┤8 ├┤4 ├┤8 ├»
└──────┘└──────┘ │ ││ ││ │»
work_1: ──────────────────────────────┤9 ├┤5 ├┤9 ├»
│ ││ ││ │»
work_2: ──────────────────────────────┤10 ├┤6 ├┤10 ├»
└───────────┘│ │└──────────────┘»
work_3: ───────────────────────────────────────────┤7 ├────────────────»
└────┘ »
« ┌─────────┐
« state_0: ────────────────┤0 ├
« │ │
« state_1: ────────────────┤1 ├
« ┌─────────┐│ │
« state_2: ─────┤0 ├┤ ├
« │ ││ │
« state_3: ─────┤1 ├┤ ├
« │ ││ │
« obj_0: ─────┤ ├┤ ├
« │ ││ │
«conditions_0: ──■──┤ ├┤2 ├
« │ │ ││ cmp_dg │
«conditions_1: ──■──┤2 ├┤ ├
« ┌─┴─┐│ cmp_dg ││ │
«conditions_2: ┤ X ├┤ ├┤ ├
« └───┘│ ││ │
« sum_0: ─────┤ ├┤ ├
« │ ││ │
« sum_1: ─────┤ ├┤ ├
« │ ││ │
« sum_2: ─────┤ ├┤ ├
« │ ││ │
« work_0: ─────┤3 ├┤3 ├
« └─────────┘└─────────┘
« work_1: ───────────────────────────
«
« work_2: ───────────────────────────
«
« work_3: ───────────────────────────
«
objective qubit index 4
[9]:
# plot exact payoff function
plt.figure(figsize=(7,5))
x = np.linspace(sum(low), sum(high))
y = (x <= 5)*np.minimum(np.maximum(0, x - strike_price_1), strike_price_2 - strike_price_1)
plt.plot(x, y, 'r-')
plt.grid()
plt.title('Payoff Function (for $S_1 = S_2$)', size=15)
plt.xlabel('Sum of Spot Prices ($S_1 + S_2)$', size=15)
plt.ylabel('Payoff', size=15)
plt.xticks(size=15, rotation=90)
plt.yticks(size=15)
plt.show()

[10]:
# plot contour of payoff function with respect to both time steps, including barrier
plt.figure(figsize=(7,5))
z = np.zeros((17, 17))
x = np.linspace(low[0], high[0], 17)
y = np.linspace(low[1], high[1], 17)
for i, x_ in enumerate(x):
for j, y_ in enumerate(y):
z[i, j] = np.minimum(np.maximum(0, x_ + y_ - strike_price_1), strike_price_2 - strike_price_1)
if x_ > barrier or y_ > barrier:
z[i, j] = 0
plt.title('Payoff Function', size=15)
plt.contourf(x, y, z)
plt.colorbar()
plt.xlabel('Spot Price $S_1$', size=15)
plt.ylabel('Spot Price $S_2$', size=15)
plt.xticks(size=15)
plt.yticks(size=15)
plt.show()

[11]:
# evaluate exact expected value
sum_values = np.sum(u.values, axis=1)
payoff = np.minimum(np.maximum(sum_values - strike_price_1, 0), strike_price_2 - strike_price_1)
leq_barrier = [ np.max(v) <= barrier for v in u.values ]
exact_value = np.dot(u.probabilities[leq_barrier], payoff[leq_barrier])
print('exact expected value:\t%.4f' % exact_value)
exact expected value: 0.8023
기대수익 (Expected Payoff) 평가¶
We first verify the quantum circuit by simulating it and analyzing the resulting probability to measure the \(|1\rangle\) state in the objective qubit.
[12]:
num_state_qubits = asian_barrier_spread.num_qubits - asian_barrier_spread.num_ancillas
print('state qubits: ', num_state_qubits)
transpiled = transpile(asian_barrier_spread, basis_gates=['u', 'cx'])
print('circuit width:', transpiled.width())
print('circuit depth:', transpiled.depth())
state qubits: 5
circuit width: 15
circuit depth: 8541
[13]:
job = execute(asian_barrier_spread, backend=Aer.get_backend('statevector_simulator'))
[14]:
# evaluate resulting statevector
value = 0
for i, a in enumerate(job.result().get_statevector()):
b = ('{0:0%sb}' % num_state_qubits).format(i)[-num_state_qubits:]
prob = np.abs(a)**2
if prob > 1e-4 and b[0] == '1':
value += prob
# all other states should have zero probability due to ancilla qubits
if i > 2**num_state_qubits:
break
# map value to original range
mapped_value = objective.post_processing(value) / (2**num_uncertainty_qubits - 1) * (high_ - low_)
print('Exact Operator Value: %.4f' % value)
print('Mapped Operator value: %.4f' % mapped_value)
print('Exact Expected Payoff: %.4f' % exact_value)
Exact Operator Value: 0.6303
Mapped Operator value: 0.8319
Exact Expected Payoff: 0.8023
Next we use amplitude estimation to estimate the expected payoff. Note that this can take a while since we are simulating a large number of qubits. The way we designed the operator (asian_barrier_spread) implies that the number of actual state qubits is significantly smaller, thus, helping to reduce the overall simulation time a bit.
[15]:
# set target precision and confidence level
epsilon = 0.01
alpha = 0.05
# construct amplitude estimation
ae = IterativeAmplitudeEstimation(epsilon=epsilon, alpha=alpha,
state_preparation=asian_barrier_spread,
objective_qubits=[objective_index],
post_processing=objective.post_processing)
[16]:
result = ae.run(quantum_instance=Aer.get_backend('qasm_simulator'), shots=100)
[17]:
conf_int = np.array(result['confidence_interval']) / (2**num_uncertainty_qubits - 1) * (high_ - low_)
print('Exact value: \t%.4f' % exact_value)
print('Estimated value:\t%.4f' % (result['estimation'] / (2**num_uncertainty_qubits - 1) * (high_ - low_)))
print('Confidence interval: \t[%.4f, %.4f]' % tuple(conf_int))
Exact value: 0.8023
Estimated value: 0.8299
Confidence interval: [0.8243, 0.8355]
[18]:
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
Version Information
Qiskit Software | Version |
---|---|
Qiskit | None |
Terra | 0.17.0.dev0+8bac9c1 |
Aer | 0.6.1 |
Ignis | 0.5.0.dev0+470d8cc |
Aqua | 0.8.0.dev0+ce81016 |
IBM Q Provider | 0.8.0 |
System information | |
Python | 3.7.7 (default, May 6 2020, 04:59:01) [Clang 4.0.1 (tags/RELEASE_401/final)] |
OS | Darwin |
CPUs | 2 |
Memory (Gb) | 16.0 |
Fri Oct 16 13:15:57 2020 CEST |
This code is a part of Qiskit
© Copyright IBM 2017, 2020.
This code is licensed under the Apache License, Version 2.0. You may
obtain a copy of this license in the LICENSE.txt file in the root directory
of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
Any modifications or derivative works of this code must retain this
copyright notice, and modified files need to carry a notice indicating
that they have been altered from the originals.
[ ]: