qiskit.optimization.algorithms.CobylaOptimizer¶
-
class
CobylaOptimizer
(rhobeg=1.0, rhoend=0.0001, maxfun=1000, disp=None, catol=0.0002, trials=1, clip=100.0)[source]¶ The SciPy COBYLA optimizer wrapped as an Qiskit
OptimizationAlgorithm
.This class provides a wrapper for
scipy.optimize.fmin_cobyla
(https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.optimize.fmin_cobyla.html) to be used within the optimization module. The arguments forfmin_cobyla
are passed via the constructor.Examples
>>> from qiskit.optimization.problems import QuadraticProgram >>> from qiskit.optimization.algorithms import CobylaOptimizer >>> problem = QuadraticProgram() >>> # specify problem here >>> optimizer = CobylaOptimizer() >>> result = optimizer.solve(problem)
Initializes the CobylaOptimizer.
This initializer takes the algorithmic parameters of COBYLA and stores them for later use of
fmin_cobyla
whensolve()
is invoked. This optimizer can be applied to find a (local) optimum for problems consisting of only continuous variables.- Parameters
rhobeg (
float
) – Reasonable initial changes to the variables.rhoend (
float
) – Final accuracy in the optimization (not precisely guaranteed). This is a lower bound on the size of the trust region.disp (
Optional
[int
]) – Controls the frequency of output; 0 implies no output. Feasible values are {0, 1, 2, 3}.maxfun (
int
) – Maximum number of function evaluations.catol (
float
) – Absolute tolerance for constraint violations.trials (
int
) – The number of trials for multi-start method. The first trial is solved with the initial guess of zero. If more than one trial is specified then initial guesses are uniformly drawn from[lowerbound, upperbound]
with potential clipping.clip (
float
) – Clipping parameter for the initial guesses in the multi-start method. If a variable is unbounded then the lower bound and/or upper bound are replaced with the-clip
orclip
values correspondingly for the initial guesses.
-
__init__
(rhobeg=1.0, rhoend=0.0001, maxfun=1000, disp=None, catol=0.0002, trials=1, clip=100.0)[source]¶ Initializes the CobylaOptimizer.
This initializer takes the algorithmic parameters of COBYLA and stores them for later use of
fmin_cobyla
whensolve()
is invoked. This optimizer can be applied to find a (local) optimum for problems consisting of only continuous variables.- Parameters
rhobeg (
float
) – Reasonable initial changes to the variables.rhoend (
float
) – Final accuracy in the optimization (not precisely guaranteed). This is a lower bound on the size of the trust region.disp (
Optional
[int
]) – Controls the frequency of output; 0 implies no output. Feasible values are {0, 1, 2, 3}.maxfun (
int
) – Maximum number of function evaluations.catol (
float
) – Absolute tolerance for constraint violations.trials (
int
) – The number of trials for multi-start method. The first trial is solved with the initial guess of zero. If more than one trial is specified then initial guesses are uniformly drawn from[lowerbound, upperbound]
with potential clipping.clip (
float
) – Clipping parameter for the initial guesses in the multi-start method. If a variable is unbounded then the lower bound and/or upper bound are replaced with the-clip
orclip
values correspondingly for the initial guesses.
Methods
__init__
([rhobeg, rhoend, maxfun, disp, …])Initializes the CobylaOptimizer.
get_compatibility_msg
(problem)Checks whether a given problem can be solved with this optimizer.
is_compatible
(problem)Checks whether a given problem can be solved with the optimizer implementing this method.
multi_start_solve
(minimize, problem)Applies a multi start method given a local optimizer.
solve
(problem)Tries to solves the given problem using the optimizer.
Attributes
Returns the clip value for this optimizer.
Returns the number of trials for this optimizer.
-
property
clip
¶ Returns the clip value for this optimizer.
- Return type
float
- Returns
The clip value.
-
get_compatibility_msg
(problem)[source]¶ Checks whether a given problem can be solved with this optimizer.
Checks whether the given problem is compatible, i.e., whether the problem contains only continuous variables, and otherwise, returns a message explaining the incompatibility.
- Parameters
problem (
QuadraticProgram
) – The optimization problem to check compatibility.- Return type
str
- Returns
Returns a string describing the incompatibility.
-
is_compatible
(problem)¶ Checks whether a given problem can be solved with the optimizer implementing this method.
- Parameters
problem (
QuadraticProgram
) – The optimization problem to check compatibility.- Return type
bool
- Returns
Returns True if the problem is compatible, False otherwise.
-
multi_start_solve
(minimize, problem)¶ Applies a multi start method given a local optimizer.
- Parameters
minimize (
Callable
[[array
],Tuple
[array
,Any
]]) – A callable object that minimizes the problem specifiedproblem (
QuadraticProgram
) – A problem to solve
- Return type
OptimizationResult
- Returns
The result of the multi start algorithm applied to the problem.
-
solve
(problem)[source]¶ Tries to solves the given problem using the optimizer.
Runs the optimizer to try to solve the optimization problem.
- Parameters
problem (
QuadraticProgram
) – The problem to be solved.- Return type
OptimizationResult
- Returns
The result of the optimizer applied to the problem.
- Raises
QiskitOptimizationError – If the problem is incompatible with the optimizer.
-
property
trials
¶ Returns the number of trials for this optimizer.
- Return type
int
- Returns
The number of trials.