English
Languages
English
Japanese
German
Korean
Portuguese, Brazilian
French
Shortcuts

qiskit.finance.data_providers.DataOnDemandProvider

class DataOnDemandProvider(token, tickers, start=datetime.datetime(2016, 1, 1, 0, 0), end=datetime.datetime(2016, 1, 30, 0, 0), verify=None)[source]

NASDAQ Data on Demand data provider.

Please see: https://github.com/Qiskit/qiskit-tutorials/blob/master/legacy_tutorials/aqua/finance/data_providers/time_series.ipynb for instructions on use, which involve obtaining a NASDAQ DOD access token.

Parameters
  • token (str) – data on demand access token

  • tickers (Union[str, List[str]]) – tickers

  • start (datetime) – first data point

  • end (datetime) – last data point precedes this date

  • verify (Union[str, bool, None]) – if verify is None, certify certificates will be used (default); if this is False, no certificates will be checked; if this is a string, it should be pointing to a certificate for the HTTPS connection to NASDAQ (dataondemand.nasdaq.com), either in the form of a CA_BUNDLE file or a directory wherein to look.

__init__(token, tickers, start=datetime.datetime(2016, 1, 1, 0, 0), end=datetime.datetime(2016, 1, 30, 0, 0), verify=None)[source]
Parameters
  • token (str) – data on demand access token

  • tickers (Union[str, List[str]]) – tickers

  • start (datetime) – first data point

  • end (datetime) – last data point precedes this date

  • verify (Union[str, bool, None]) – if verify is None, certify certificates will be used (default); if this is False, no certificates will be checked; if this is a string, it should be pointing to a certificate for the HTTPS connection to NASDAQ (dataondemand.nasdaq.com), either in the form of a CA_BUNDLE file or a directory wherein to look.

Methods

__init__(token, tickers[, start, end, verify])

type token

str

get_coordinates()

Returns random coordinates for visualisation purposes.

get_covariance_matrix()

Returns the covariance matrix.

get_mean_vector()

Returns a vector containing the mean value of each asset.

get_period_return_covariance_matrix()

Returns a vector containing the mean value of each asset.

get_period_return_mean_vector()

Returns a vector containing the mean value of each asset.

get_similarity_matrix()

Returns time-series similarity matrix computed using dynamic time warping.

run()

Loads data, thus enabling get_similarity_matrix and get_covariance_matrix methods in the base class.

get_coordinates()

Returns random coordinates for visualisation purposes.

Return type

Tuple[float, float]

get_covariance_matrix()

Returns the covariance matrix.

Return type

ndarray

Returns

an asset-to-asset covariance matrix.

Raises

QiskitFinanceError – no data loaded

get_mean_vector()

Returns a vector containing the mean value of each asset.

Return type

ndarray

Returns

a per-asset mean vector.

Raises

QiskitFinanceError – no data loaded

get_period_return_covariance_matrix()

Returns a vector containing the mean value of each asset.

Return type

ndarray

Returns

a per-asset mean vector.

Raises

QiskitFinanceError – no data loaded

get_period_return_mean_vector()

Returns a vector containing the mean value of each asset.

Return type

ndarray

Returns

a per-asset mean vector.

Raises

QiskitFinanceError – no data loaded

get_similarity_matrix()

Returns time-series similarity matrix computed using dynamic time warping.

Return type

ndarray

Returns

an asset-to-asset similarity matrix.

Raises

QiskitFinanceError – no data loaded

run()[source]

Loads data, thus enabling get_similarity_matrix and get_covariance_matrix methods in the base class.

Return type

None