English
Languages
English
Japanese
German
Korean
Portuguese, Brazilian
French
Shortcuts

qiskit.chemistry.transformations.BosonicTransformation

class BosonicTransformation(qubit_mapping=<BosonicQubitMappingType.DIRECT: 'direct'>, transformation_type=<BosonicTransformationType.HARMONIC: 'harmonic'>, basis_size=2, truncation=3)[source]

A vibronic Hamiltonian operator representing the energy of the nuclei in the molecule

Parameters
  • qubit_mapping (BosonicQubitMappingType) – a string giving the type of mapping (only the ‘direct’ mapping is implemented at this point)

  • transformation_type (BosonicTransformationType) – a string giving the modal basis. The Hamiltonian is expressed in this basis.

  • basis_size (Union[int, List[int]]) – define the number of modals per mode. If the number of modals is the same for each mode, then only an int is required. However, if the number of modals differ depending on the mode basis_size should be a list of int, for example: [3,4] means 2 modes: first mode has 3 modals, second mode has 4 modals.

  • truncation (int) – where is the Hamiltonian expansion truncation (1 for having only 1-body terms, 2 for having on 1- and 2-body terms…)

__init__(qubit_mapping=<BosonicQubitMappingType.DIRECT: 'direct'>, transformation_type=<BosonicTransformationType.HARMONIC: 'harmonic'>, basis_size=2, truncation=3)[source]
Parameters
  • qubit_mapping (BosonicQubitMappingType) – a string giving the type of mapping (only the ‘direct’ mapping is implemented at this point)

  • transformation_type (BosonicTransformationType) – a string giving the modal basis. The Hamiltonian is expressed in this basis.

  • basis_size (Union[int, List[int]]) – define the number of modals per mode. If the number of modals is the same for each mode, then only an int is required. However, if the number of modals differ depending on the mode basis_size should be a list of int, for example: [3,4] means 2 modes: first mode has 3 modals, second mode has 4 modals.

  • truncation (int) – where is the Hamiltonian expansion truncation (1 for having only 1-body terms, 2 for having on 1- and 2-body terms…)

Methods

__init__([qubit_mapping, …])

type qubit_mapping

BosonicQubitMappingType

build_hopping_operators([excitations])

type excitations

Union[str, List[List[int]]]

get_default_filter_criterion()

Returns a default filter criterion method to filter the eigenvalues computed by the eigen solver.

interpret(raw_result)

Interprets an EigenstateResult in the context of this transformation.

transform(driver[, aux_operators])

Transformation to qubit operator from the driver

Attributes

basis

returns the basis (number of modals per mode)

commutation_rule

Getter of the commutation rule

num_modes

the number of modes

untapered_qubit_op

Getter for the untapered qubit operator

property basis

returns the basis (number of modals per mode)

Return type

Union[int, List[int]]

build_hopping_operators(excitations='sd')[source]
Parameters

excitations (Union[str, List[List[int]]]) –

Return type

Tuple[Dict[str, WeightedPauliOperator], Dict, Dict[str, List[List[int]]]]

Returns

Dict of hopping operators, dict of commutativity types and dict of excitation indices

property commutation_rule

Getter of the commutation rule

Return type

bool

get_default_filter_criterion()[source]

Returns a default filter criterion method to filter the eigenvalues computed by the eigen solver. For more information see also aqua.algorithms.eigen_solvers.NumPyEigensolver.filter_criterion. In the fermionic case the default filter ensures that the number of particles is being preserved.

Return type

Optional[Callable[[Union[List, ndarray], float, Optional[List[float]]], bool]]

interpret(raw_result)[source]

Interprets an EigenstateResult in the context of this transformation.

Parameters

raw_result (Union[EigenstateResult, EigensolverResult, MinimumEigensolverResult]) – an eigenstate result object.

Return type

VibronicStructureResult

Returns

An vibronic structure result.

property num_modes

the number of modes

Type

Returns

Return type

int

transform(driver, aux_operators=None)[source]

Transformation to qubit operator from the driver

Parameters
  • driver (BaseDriver) – BaseDriver

  • aux_operators (Optional[List[Any]]) – Optional additional aux ops to evaluate

Return type

Tuple[WeightedPauliOperator, List[WeightedPauliOperator]]

Returns

qubit operator, auxiliary operators

property untapered_qubit_op

Getter for the untapered qubit operator