English
Languages
English
Japanese
German
Korean
Portuguese, Brazilian
French
Shortcuts

qiskit.chemistry.algorithms.pes_samplers.PotentialBase

class PotentialBase(molecule)[source]

Class to hold prescribed 1D potentials (e.g. Morse/Harmonic) over a degree of freedom.

__init__(molecule)

Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(molecule)

Initialize self.

dissociation_energy([scaling])

Returns the dissociation energy (scaled by ‘scaling’)

eval(x)

After fitting the data to the fit function, predict the energy at a point x.

fit(xdata, ydata[, initial_vals, bounds_list])

Fits surface to data

get_equilibrium_geometry([scaling])

Get the equilibrium energy.

get_maximum_trusted_level([n])

Returns the maximum energy level for which the particular implementation still provides a good approximation of reality.

get_minimal_energy([scaling])

Get the minimal energy.

get_num_modes()

This (1D) potential represents a single vibrational mode

get_trust_region()

The potential will usually be well-defined (even if not useful) for arbitrary x so we return a fairly large interval here.

update_molecule(molecule)

Wipe state if molecule changes, and check validity of molecule for potential.

vibrational_energy_level(n)

Returns the n-th vibrational energy level for a given mode.

abstract dissociation_energy(scaling=1.0)[source]

Returns the dissociation energy (scaled by ‘scaling’)

Return type

float

abstract eval(x)

After fitting the data to the fit function, predict the energy at a point x.

Parameters

x (float) – value to evaluate surface in

Return type

float

Returns

value of surface in point x

abstract fit(xdata, ydata, initial_vals=None, bounds_list=None)

Fits surface to data

Parameters
  • xdata (List[float]) – x data to be fitted

  • ydata (List[float]) – y data to be fitted

  • initial_vals (Optional[List[float]]) – Initial values for fit parameters. None for default. Order of parameters is d_e, alpha, r_0 and m_shift (see fit_function implementation)

  • bounds_list (Optional[Tuple[List[float], List[float]]]) – Bounds for the fit parameters. None for default. Order of parameters is d_e, alpha, r_0 and m_shift (see fit_function implementation)

Return type

None

abstract get_equilibrium_geometry(scaling=1.0)

Get the equilibrium energy.

Returns the geometry for the minimal energy (scaled by ‘scaling’) Default units (scaling=1.0) are Angstroms. Scale by 1E-10 to get meters.

Parameters

scaling (float) – scaling factor

Return type

float

Returns

equilibrium geometry

get_maximum_trusted_level(n=0)

Returns the maximum energy level for which the particular implementation still provides a good approximation of reality. Default value of 100. Redefined where needed (see e.g. Morse).

Parameters

n (int) – vibronic mode

Return type

float

Returns

maximum_trusted_level setted

abstract get_minimal_energy(scaling=1.0)

Get the minimal energy.

Returns the value of the minimal energy (scaled by ‘scaling’) Default units (scaling=1.0) are J/mol. Scale appropriately for Hartrees.

Parameters

scaling (float) – scaling factor

Return type

float

Returns

minimum energy

get_num_modes()[source]

This (1D) potential represents a single vibrational mode

Return type

int

get_trust_region()[source]

The potential will usually be well-defined (even if not useful) for arbitrary x so we return a fairly large interval here. Redefine in derived classes if needed.

Return type

Tuple[float, float]

update_molecule(molecule)

Wipe state if molecule changes, and check validity of molecule for potential.

Parameters

molecule (Molecule) – chemistry molecule

Return type

Molecule

Returns

molecule used

abstract vibrational_energy_level(n)

Returns the n-th vibrational energy level for a given mode.

Parameters

n (int) – number of vibrational mode

Return type

float

Returns

n-th vibrational energy level for a given mode