qiskit.aqua.components.uncertainty_problems.UnivariatePiecewiseLinearObjective¶
-
class
UnivariatePiecewiseLinearObjective
(num_state_qubits, min_state_value, max_state_value, breakpoints, slopes, offsets, f_min, f_max, c_approx, i_state=None, i_objective=None)[source]¶ Univariate Piecewise Linear Objective Function.
This objective function applies controlled Y-rotation to the target qubit, where the control qubits represent integer value, and rotation approximates a piecewise linear function of the amplitude f:
\[|x\rangle |0\rangle \mapsto |x\rangle (\sqrt(1 - f(x))|0\rangle + sqrt(f(x))|1\rangle )\]- Parameters
num_state_qubits (
int
) – number of qubits to represent the statemin_state_value (
float
) – lower bound of values to be represented by state qubitsmax_state_value (
float
) – upper bound of values to be represented by state qubitsbreakpoints (
Union
[List
[float
],ndarray
]) – breakpoints of piecewise linear functionslopes (
Union
[List
[float
],ndarray
]) – slopes of linear segmentsoffsets (
Union
[List
[float
],ndarray
]) – offset of linear segmentsf_min (
float
) – minimal value of resulting function (required for normalization of amplitude)f_max (
float
) – maximal value of resulting function (required for normalization of amplitude)c_approx (
float
) – approximating factor (linear segments are approximated by contracting rotation around pi/4, where sin^2() is locally linear)i_state (
Optional
[List
[int
]]) – indices of qubits that represent the statei_objective (
Optional
[int
]) – index of target qubit to apply the rotation to
-
__init__
(num_state_qubits, min_state_value, max_state_value, breakpoints, slopes, offsets, f_min, f_max, c_approx, i_state=None, i_objective=None)[source]¶ - Parameters
num_state_qubits (
int
) – number of qubits to represent the statemin_state_value (
float
) – lower bound of values to be represented by state qubitsmax_state_value (
float
) – upper bound of values to be represented by state qubitsbreakpoints (
Union
[List
[float
],ndarray
]) – breakpoints of piecewise linear functionslopes (
Union
[List
[float
],ndarray
]) – slopes of linear segmentsoffsets (
Union
[List
[float
],ndarray
]) – offset of linear segmentsf_min (
float
) – minimal value of resulting function (required for normalization of amplitude)f_max (
float
) – maximal value of resulting function (required for normalization of amplitude)c_approx (
float
) – approximating factor (linear segments are approximated by contracting rotation around pi/4, where sin^2() is locally linear)i_state (
Optional
[List
[int
]]) – indices of qubits that represent the statei_objective (
Optional
[int
]) – index of target qubit to apply the rotation to
Methods
__init__
(num_state_qubits, min_state_value, …)- type num_state_qubits
int
build
(qc, q[, q_ancillas, params])build_controlled
(qc, q, q_control[, …])Adds corresponding controlled sub-circuit to given circuit
build_controlled_inverse
(qc, q, q_control[, …])Adds controlled inverse of corresponding sub-circuit to given circuit
build_controlled_inverse_power
(qc, q, …[, …])Adds controlled, inverse, power of corresponding circuit.
build_controlled_power
(qc, q, q_control, power)Adds controlled power of corresponding circuit.
build_inverse
(qc, q[, q_ancillas])Adds inverse of corresponding sub-circuit to given circuit
build_inverse_power
(qc, q, power[, q_ancillas])Adds inverse power of corresponding circuit.
build_power
(qc, q, power[, q_ancillas])Adds power of corresponding circuit.
returns number of qubits
returns number of qubits controlled
requires ancillas
returns required ancillas controlled
value_to_estimation
(value)value to estimation
Attributes
Returns the number of target qubits
-
build_controlled
(qc, q, q_control, q_ancillas=None, use_basis_gates=True)¶ Adds corresponding controlled sub-circuit to given circuit
- Parameters
qc (QuantumCircuit) – quantum circuit
q (list) – list of qubits (has to be same length as self._num_qubits)
q_control (Qubit) – control qubit
q_ancillas (list) – list of ancilla qubits (or None if none needed)
use_basis_gates (bool) – use basis gates for expansion of controlled circuit
-
build_controlled_inverse
(qc, q, q_control, q_ancillas=None, use_basis_gates=True)¶ Adds controlled inverse of corresponding sub-circuit to given circuit
- Parameters
qc (QuantumCircuit) – quantum circuit
q (list) – list of qubits (has to be same length as self._num_qubits)
q_control (Qubit) – control qubit
q_ancillas (list) – list of ancilla qubits (or None if none needed)
use_basis_gates (bool) – use basis gates for expansion of controlled circuit
-
build_controlled_inverse_power
(qc, q, q_control, power, q_ancillas=None, use_basis_gates=True)¶ Adds controlled, inverse, power of corresponding circuit. May be overridden if a more efficient implementation is possible
-
build_controlled_power
(qc, q, q_control, power, q_ancillas=None, use_basis_gates=True)¶ Adds controlled power of corresponding circuit. May be overridden if a more efficient implementation is possible
-
build_inverse
(qc, q, q_ancillas=None)¶ Adds inverse of corresponding sub-circuit to given circuit
- Parameters
qc (QuantumCircuit) – quantum circuit
q (list) – list of qubits (has to be same length as self._num_qubits)
q_ancillas (list) – list of ancilla qubits (or None if none needed)
-
build_inverse_power
(qc, q, power, q_ancillas=None)¶ Adds inverse power of corresponding circuit. May be overridden if a more efficient implementation is possible
-
build_power
(qc, q, power, q_ancillas=None)¶ Adds power of corresponding circuit. May be overridden if a more efficient implementation is possible
-
get_num_qubits
()¶ returns number of qubits
-
get_num_qubits_controlled
()¶ returns number of qubits controlled
-
property
num_target_qubits
¶ Returns the number of target qubits
-
required_ancillas_controlled
()¶ returns required ancillas controlled